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Introduction

Interest in modelling financial data dates back to 1900, where

Bachelier modelled the behavior of a single stock.

Ever since, many different types of models have been suggested

for the modelling of such data.

The models are divided into two groups: the discrete time models

and the continuous time models.
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Financial Data

Let {St} be the S&P 500 index and let yt denote the log returns of this
index,

yt = log (St) − log (St−1) .
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Stylized Features of Financial Data

The term stylized features refers to the features that describe fi-

nancial data, which the models must capture (Taylor 1986).
Such features are,

• Fat Tails,

• Asymmetry,

• Volatility Clustering,

• Aggregational

Gaussianity,

• Seasonality.
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Stochastic Volatility Model

Stochastic volatility (SV) models capture the time varying variance of the log-returns of
assets.
In the standard discrete SV model, the variance follows a latent stochastic (log-normal
autoregressive) process.

The SV model by Taylor (1982) is of the form:

yt = β exp {ht/2} ǫt,

ht = µ + φ (ht−1 − µ) + σηηt,

where:

• β is the modal instantaneous volatility,

• µ is the log-run mean of the log-volatility,

• |φ| < 1 is the volatility persistence,

• ǫt, ηt are uncorrelated standard normal shocks,

• ση is the volatility of the log-volatility.
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State Space Representation

A representation of the SV model as a dynamic linear model is given
by:

log y2

t = ht + log ǫ2t

ht = µ + φ (ht−1 − µ) + σηηt.

Equivalently,

y∗

t = ht + zt

ht = µ + φ (ht−1 − µ) + σηηt

where zt ∼ log χ2

1
.
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Dirichlet Process Mixture Model

The stochastic volatility model can be reparametrized,

y
∗

t = h
∗

t + z
∗

t

h
∗

t = φh
∗

t−1 + σηηt

where h∗

t = ht − µ and z∗

t = zt + µ.

The error term z∗

t can be modeled as a Dirichlet process mixture model. We
use a representation as proposed by Griffin (2009) where the hyperparameters
are treated as the location, scale and smoothness of the density,

z
∗

t |µt ∼ N
(

z
∗

t |µt, βσ
2)

µt|G ∼ G

G ∼ DP (αG0)

G0 ≡ N
(

µ, (1 − β) σ
2)

.
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Offset Mixture Representation

• Parametric According to Kim et al. (1998) an offset of seven normal
distributions is used to approximate the likelihood. The purpose of this is to
have an efficient procedure which samples all the log-volatilities at once. In
order to correct the approximation error, a reweighting procedure is used.

• Nonparametric The model presented extends this idea by using instead
the seven mixture normal, a nonparametric offset mixture. This is done by
using nonparametric schemes available in the current literature. Most of
the algorithms are based on the Blackwell- MacQueen (1973)

representation of the prior distribution as a Pólya urn Scheme.

µi|µ1, ...µi−1 ∼
1

i − 1 + α

i−1
∑

j=1

δ (µj) +
α

i − 1 + α
G0

where δ (µj) is the distribution concentrated at the single observation µj .
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Log-Volatility Samplers

• In literature, there have been suggested different ways of estimating the
log-volatilities, such as: single-state and multi-state samplers.

• Jacquier et al. (1994) introduced the single-state sampler. Each
log-volatility is updated individually using an accept/reject
Metropolis-Hastings algorithm.

• Carter and Kohn (1994) and de Jong and Shephard (1995) proposed a
multi-state sampler based on the Kalman filter, where the log-volatilies are
sampled simultaneously.

• Carter and Kohn (1994) and Frühwirth-Schnatter (1994) introduced an
algortihm where the vector of the log-volatilities was updated with the
forward filtering backward sampling code (FFBS)
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Inference for the parameters of the SV

Parametric Model

• Initialize s, φ, σ2
η and µ.

• Draw h from h|y∗, s, φ, σ2
η, µ using the FFBS.

• Draw s from s|y∗,h using the 7-normal mixture model.

• Draw φ, σ2
η, µ|h using MCMC schemes.

Semiparametric Model

• Initialize φ, σ2
η, µ and µi.

• Draw h∗ from h∗|y∗, s, φ, σ2
η, µ, σ2 using the FFBS.

• Draw µi using nonparametric schemes.

• Draw φ, σ2
η, µ and σ2 using MCMC schemes.
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Results

The data used are the log-returns of the S&P 500 index for the period of
December 12, 1992 to June 6, 2000.
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Results

The results for both models are based on the prior distributions:

φ ∼ N (0, 10) × Iφ (−1, 1) , σ
2
η ∼ IG (2.5, 0.0025) ,

µ ∼ N (0, 10) , σ
2 ∼ IG (2.5, 0.0025) .

The number of iterations is 210000 of which the first 10000 are discarded as
burn-in period. After this period, we apply thinning keeping every 10th draw.

SPM PM

Mean Std 95%CI Mean Std 95%CI

φ 0.996 0.003 [0.991, 0.999] 0.991 0.004 [0.982, 0.997]

σ2
η 0.006 0.002 [0.003, 0.010] 0.015 0.005 [0.009, 0.024]

µ −1.605 0.5634 [−2.418,−0.599] −0.435 0.640 [−0.973, 0.164]

σ2 6.5716 2.5053 [2.847, 10.483]
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Results
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Results
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Thank you!
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