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Just to set the record straight...



Generally, discrete Markov random fields are distributions defined
on graphs:

The graphs may be regular or not.



1. Continuous-valued Markov random fields, eg Gaussian MRFs

2. Discrete-valued Markov random fields
• Regular lattices – image models; spatial statistics;

(Lecture 1)
• Irregular lattices – social network models; classification;

(Lecture 2)



Part I – MRFs on regular lattices.



Binary MRFs on regular lattices

• Defined on a lattice x = {x1, . . . , xn}.
• Lattice points xi take values {−1, 1}.
• Full conditional p(xi |x−i , θ) = p(xi |neighbours of i , θ).

p(x |θ) ∝ q(x |θ) = exp

θ0 ∑
i

xi +
1

2
θ1

∑
i∼j

xixj

 .

Here ∼ means “is a neighbour of”.



Binary MRFs on regular lattices
The Markov property
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Binary MRFs on regular lattices

The normalising constant is typically difficult to compute:

z(θ) =
∑
x1

· · ·
∑
xn

q(x |θ).



Our problem of interest

How can statistical inference be carried for a model

p(x|θ) =
q(x|θ)

z(θ)
,

where z(θ) is an intractable normalising constant?



Maximum likelihood estimation:

θ̂ = arg max
θ

p(x|θ) = arg max
θ

q(x|θ)

z(θ)
.

Bayesian inference:

Here we use the posterior distribution p(θ|x) ∝ p(x|θ)p(θ).
A Metropolis-Hastings MCMC scheme requires calculation of

p(x|θ∗)p(θ∗)

p(x|θ)p(θ)
=

q(x|θ∗)p(θ)

q(x|θ)p(θ)

z(θ)

z(θ∗)
.



Posterior distributions of the type

p(θ|x) ∝ p(x|θ)p(θ)

=
q(x|θ)

z(θ)
p(θ)

are sometimes called doubly intractable distributions.

This type of complication occurs frequently for Markov random
field models.
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An historical aside

• The Metropolis algorithm (1953) arose from the need to
sample from p(x|θ).

• Geman and Geman (1984) illustrated the Gibbs sampler for
MRFs. The Gibbs sampler was later popularised by Gelfand
and Smith (1990).

• Perfect sampling, Coupling from the past: Propp and Wilson
(1996) showed that it’s possible to use MCMC to sample
exactly from an MRF.

All of these seminal papers perform MCMC sampling for the MRF
x conditional on θ.



Realisations of binary MRfs

As the parameter θ increases, the
level of spatial aggregation does
too.

Hidden MRFs
Here a true scene x is corrupted
by a noise process with
parameters µ yielding data y.
The aim to infer all unknown
parameters.
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Standard MCMC algorithm

Step 1. Update each xi in turn by Gibbs sampling
from:

p(xi |x\i , y, θ, µ) ∝ p(yi |xi , µ)p(xi |xN(i), θ). (1)

Step 2. Update µ: Carry out a M-H update of µ from
the full conditional:

p(µ|x, y, θ) ∝

{
n∏

i=1

p(yi |xi , µ)

}
πµ(µ).

Step 3. Update θ: Carry out a M-H update of θ from
the full conditional:

p(θ|x, µ, y) ∝ p(x|θ)πθ(θ).
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We now concentrate on how to deal with the intractable
normalising constant z(θ).



Undirected Graphs and joint distributions

1

x2

x

x
3

x4

x5

x6

The joint distribution can be written as

p(x1, . . . , x6) =
1

z
ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x6)ψ(x2, x5, x6).

Naively, the normalising constant is computed as

z =
∑
x1

· · ·
∑
x6

ψ(x1, x2)ψ(x1, x3)ψ(x2, x4)ψ(x3, x6)ψ(x2, x5, x6).

Computational complexity scales as s6 (assuming xi has s states).



Undirected Graphs and joint distributions

However,

z =
∑
x1

∑
x2

ψ(x1, x2)
∑
x3

ψ(x1, x3)
∑
x4

ψ(x2, x4)∑
x6

ψ(x3, x6)
∑
x5

ψ(x2, x5, x6).

No more than 3 terms appear in any summand. Computational
complexity is decreased!

In general we would like to perform the summation so that the
largest factor is as small as possible.



MRF in factorisable form
Define an index i = 1, . . . , n, where points are ordered from top to
bottom and rows from left to right. m denotes the number of rows.

q(x |θ) = qn(xn|θ)
n−1∏
i=1

qi (xi |xi+1:i+m, θ),

where we define

qi (xi |xi+1:i+m, θ) = exp(θ0xi + θ1xi (xi+1 + xm+i ))

with modifications when i corresponds to a point on the last row
or column.

q6 (x6 |x7:10 )



MRF in factorisable form

We use the shorthand notation xi :j = (xi , . . . , xj).

z(θ) =
∑
x1

∑
x2

· · ·
∑
xn

q1(x1|x2:m+1, θ)q2(x2|x3:m+2, θ) . . . qn(xn|θ)

=
∑
x1

q1(x1|x2:m+1, θ)
∑
x2

q2(x2|x3:m+2, θ) · · ·
∑
xn

qn(xn|θ).



The recursive algorithm

z1(θ, x2:n) =
∑
x1

q1(x1:m+1, θ)

zi (θ, xi+1:n) =
∑
xi

qi (xi :m+i , θ)zi−1(θ, xi :n), for i = 2, . . . , n.

z(θ) = zn(θ)



Exact sampling: The recursive algorithm

z1(θ, x2:n) =
∑
x1

q1(x1:m+1, θ)

zi (θ, xi+1:n) =
∑
xi

qi (xi :m+i , θ)zi−1(θ, xi :n), for i = 2, . . . , n.

Effectively zi is the normalising constant for

p(x1:i |xi+1:n, θ) ∝ q(x1:i |xi+1:n, θ)

Each zi depends on m variables xi+1:m+1 - In total there are 2m!



Exact sampling: The recursive algorithm

p(x |θ) = p(x1|x2:n, θ)p(x2|x3:n, θ) . . . p(xn|θ).

We gather a sample from p(x |θ) by sampling from

p(xi |xi+1:n, θ) =
p(x1:i |xi+1:n, θ)

p(x1:i−1|xi :n, θ)

=
q(x1:i |xi+1:n, θ)zi−1(θ, xi :n)

q(x1:i−1|xi :n, θ)zi (θ, xi+1:n)
,

for i = n, n − 1, . . . , 1.



Exact sampling: The recursive algorithm

We propose a two pass algorithm:

Forwards pass: Using the recursive scheme above, we generate in
turn each zi (θ, xi+1:n) for i = 1, 2, . . . , n.

Backwards pass: Sample xi from p(xi |xi+1:n, θ) using the zi ’s, for
i = n, n − 1, . . . , 1.



Computer implementation

• Main computational loads arises from generating the
collection of zi ’s from the forwards pass.
For each zi , there are 2m realisations, in total n × 2m.

• In our computer implementation, we can sample lattices
where the smaller dimension is ≤ 19. For example, a 19× 19
lattice takes about 150 seconds.



Extensions of the algorithm

The algorithm can be extended to:

1. sample from p(x |θ).

2. sample from p(x |θ, y), where y is a hidden version of x .

3. compute the modal lattice for p(x |θ, y). Again a two pass
algorithm is used, essentially sampling from an annealed
distribution at temperature 0.

4. compute the marginal distribution of points, pairs of points,
eg p(xi |θ), p(xi , xj |θ, y) for neighbours i , j .

5. different neighbourhood structures.

6. more than 2 states.



Further extensions: hidden MRFs

Consider the posterior marginal for θ. For any realisation x ,

p(θ|y) =
p(x , θ|y)

p(x |θ, y)
.

We can write this as

p(θ|y) ∝ p(y |x)p(x |θ)p(θ)

p(x |θ, y)
,

the normalising constant is p(y) - the marginal likelihood.

Each term on the RHS above can be calculated exactly.

We estimate p(θ|y) and p(y) by integrating (numerically) the RHS
wrt θ.

We estimate these marginals without using MCMC
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Illustrative example - moderately sized lattice

Data consist of measurements of soil
phosphate content on a 16× 16 grid at 10
metre intervals at a location in northern
Greece (Besag, York, Mollie, 1989).

Model k = 1: MRF where each point has 4 nearest neighbours.
Model k = 2: MRF where each point has 8 nearest neighbours.

We assume y ’s are conditionally independent given x ’s with normal
distribution with known means and unknown common variance κ.



Illustrative example - moderately sized lattice

p(θ, κ|y , k = 1) p(θ, κ|y , k = 2)

Marginal likelihoods:

log p(y |k = 1) = −110.168 and log p(y |k = 2) = −114.075

Assuming equally weighted models, a priori, yields

p(k = 1|y) = 0.98 and p(k = 2|y) = 0.02



Now we ask how we can use the exact results on small lattices to
do aproximate inference for larger lattices.



Large lattice approximation

Strategy: Utilise exact results on sub-lattices.

xcxA xB

p(x |θ) = p(xA|θ, xc) p(xc |θ) p(xB |θ, xc).

Assume we can compute both p(xA|θ, xc) and p(xB |θ, xc).

The problem remains to compute p(xc |θ).



Large lattice approximation

xcxA xB

xS xT

Consider a sub-lattice, x∗ = xS ∪ xc ∪ xT .

p(xc |θ) =
p(x |θ)

p(xA|xc , θ)p(xB |xc , θ)

≈ p(x∗|θ)

p(xS |xc , θ)p(xT |xc , θ)
.
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Large lattice approximation
Performance of the approximation

• A 19× 19 realisation from an Ising model with θ = 0.4 was
sampled. Gaussian noise with zero mean and unit variance
was added to each state value leaving data y .

• We can compute p(θ|y) very precisely, since we can compute
p(x |θ) and p(x |θ, y) exactly.

• We can compare this to an estimate of p(θ|y) using the
approximations to p(x |θ) and p(x |θ, y) by covering the middle
column with a sub-lattice of size 19× 5.



Illustrative example - larger sized lattice

Gene expressions were measured across the whole genome of
Plasmodium falciparum, the organism that causes human malaria,
for 46 1-hour consecutive intervals.

This example focuses on the relatively short mitochondrial
chromosome, which consists of 72 genes and about which relatively
little is known.

The data y is observed on a 46× 72
spatial-temporal rectangular lattice. ytg

is the log-expression of gene g at time t.



Illustrative example - larger sized lattice
Latent model

The latent process is modelled a non-homogeneous Ising
distribution with 2 states {−1, 1} corresponding to ‘up-regulation’
and ‘down-regulation’.

p(x |θ) ∝ exp (θtVt(x) + θg Vg (x)) .

• Vt(x) measures the interactions between neighbouring lattice
points corresponding to the same gene in the ‘time’ direction.

• Vg (x) similarly measures interactions at the same time point
between neighbouring genes.



Illustrative example - larger sized lattice
Large lattice approximation

• The 46× 72 lattice was partitioned into 3 disjoint sub-lattices
of dimension 46× 17 and a final sub-lattice of dimension
46× 18, each separated by a column of lattice points.

• To compute the marginal distribution of the columns of lattice
points, a lattice of size 17× 46 was used to cover each
column.



Illustrative example - larger sized lattice
Results

p(θt |y) p(θg |y)



We now focus on some further approaches to approximate p(x|θ)
for large lattices x.



Alternative large lattice approximations
Reduced dependence approximations (RDA)

Let ri denote the ith row vector.

π(x |θ) = π(rm|θ)
m−1∏
i=1

π(ri |ri+1:m, θ).

We estimate each term on the RHS by conditioning on a reduced
number of rows m1.

π(x |θ) ≈ π(rm−m1+1:m|θ)

m−m1∏
i=1

π(ri |ri+1:i+m1 , θ).

Each factor is further approximated as

π(ri |ri+1:i+m1 , θ) ≈ π(ri :i+m1 |θ)

π(ri+1:i+m1 |θ)
.



Alternative large lattice approximations
Reduced dependence approximations (RDA)

π(ri |ri+1:i+m1 , θ) ≈ π(ri :i+m1 |θ)

π(ri+1:i+m1 |θ)
.

Note that each probability appearing above can be calculated using
the recursion method, provided m1 ≤ 20. In fact,

π(x |θ) ≈ q(x |θ)

(zm1(θ))m−m1+1/(zm1−1(θ))m−m1
.

Effectively, we approximate the overall NC as

z(θ) =
(zm1(θ))m−m1+1

(zm1−1(θ))m−m1
.

This approximation has been applied in a variational setting by
McGrory et al. (2009).
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Alternative large lattice approximations
Reduced dependence approximations (RDA)

What does this approximation depend on?

• The size of m1 - the closer to m the better.

• The value of θ - the closer to 0 the better.

This plot displays approximations to the log NC for a 50× 50
lattice with θ = [0, 0.4] for values of m1 = 3, . . . , 16.



Alternative large lattice approximations
Reduced dependence approximations (RDA)

We can compute the NC (quite fast) and exactly for a 16× 16
lattice:
Here we investigate how close the approximate log NC is to the
true log NC for different values of m1

Ratio True
Approx = 0.995 for m1 = 8



Alternative large lattice approximations
Partially ordered Markov model defined on sub-lattices

POMMs are a generalisation of a Markov chain to a directed acylic
graph.

π(xij |x−ij , θ) = π(xij |xi+1,j , xi ,j+1, θ)

Now the likelihood is tractable:

π(x |θ) =
n∏

i=1

π(xij |xi+1,j , xi ,j+1, θ)



Alternative large lattice approximations
Partially ordered Markov model defined on sub-lattices

Alternatively, we can write the likelihood as:

π(x |θ) =

∏
i∈L0

π(xi )

  L∏
j=1

∏
i∈Lj

π(xi |pa(xi ))



Now suppose that each lattice point is a sublattice for which we
can compute a likelihood...



Alternative large lattice approximations
Partially ordered Markov model defined on sub-lattices

Suppose lattice x is divided into L non-overlapping sublattices xl .

π(xl |θ) =
1

zl(θ)
exp(θ0V0(xl) + θf Vf (xl))

Naively we could assume independent sub-lattices,

π(x|θ) ≈
L∏

i=1

1

zl(θ)
exp(θ0V0(xl) + θf Vf (xl))

But now dependencies across boundaries of xl ’s have been ignored.
We re-introduce these dependencies by defining a POMM with
sublattices xl as the nodes!



Alternative large lattice approximations
Partially ordered Markov model defined on sub-lattices

Now each sublattice xl is dependent on its parent sub-lattices:

π(xl |pa(xl), θ) =
1

zl(θ, pa(xl))
exp(θ0V0(xl)+θf Vf (xl)+θf Vpa(xl , pa(xl))

The interactions between xl and it’s two predecessors is taken care
of by Vpa(xl , pa(xl)).
Note that the NC zl(θ, pa(xl)) is now a function of the parent
sublattices.
Likelihood now looks like:

π(x |θ) ≈ π(xL)
L−1∏
l=1

π(xl |pa(xl))



Alternative large lattice approximations
Cylinder approximation

Assume the lattice is wrapped on a cylinder

Why is this useful?

Now every column has two neighbouring columns. Therefore, the
distribution of the rows is stationary.

p(x) = p(c1, . . . , cn) = p(ci , ci+1, . . . , cn, c1, . . . , ci−1),

where ci is the vector of lattice points for column i .



Alternative large lattice approximations
Cylinder approximation

Let the set of all possible values of cj be denoted by

A = {a1, . . . , an},where N = 2m.

Theorem
Suppose the unnormalised q(x|θ) can be factorised as

q(x|θ) =
n∏

i=1

h(cj , cj − 1)

for a given positive real function h(·, ·) defined on A×A. Then the
normalising constant for q(x|θ) is given by tr(Qn) where Q is an
N × N matrix whose kth row (Qk1 , . . . ,Qkn) is defined by

h(c1 = a1, c0 = ak), h(c1 = a2, c0 = ak), . . . , h(c1 = aN , c0 = ak)

for k = 1, . . . ,N.



Alternative large lattice approximations
Cylinder approximation

Some remarks:

1. Q is almost like a transition probability matrix.
(The kth row of Q gives the probability to transition from
ck = ak to any other column).

2.

h(c1, c0) = exp

{
θ0

m∑
i=1

xi1 + θ1

m−1∑
i=1

xi1xi+1,1 + θ1

m∑
i=1

xi0xi1

}

The second term is the ’within’ c1 interactions, third term is
the between c0, c1 interactions.

3. For a binary MRF, Q is a 2m × 2m matrix (m = no. of rows).

z(θ) = tr(Qn) = tr(Dn),

where D is the matrix of eigenvalues of Q.



Other approaches to handle intractable NCs

Recall: We are interested in the posterior

p(θ|x) ∝ p(x|θ)p(θ)

where

p(x|θ) =
q(x|θ)

z(θ)
,

where z(θ) is an intractable normalising constant.

Approximate Bayesian Computation

First, rejection sampling:

1. θ ∼ p(θ).

2. Accept θ with probability p(x|θ).

Obviously step 2 is a problem.



Approximate Bayesian Computation

However... it is often relatively easy to simulate from the model.

1. θ ∼ p(θ).

2. Simulate pseudo-data x∗ ∼ p(·|θ).

3. Accept θ if s(x∗) = s(x), where s(·) is sufficient for p(·|θ).

The target distribution in this case is

p(θ, x∗|x) ∝ p(x|θ)p(θ)I [s(x∗) = s(x)]

The rejection ratio is

p(x|θ)p(θ)I [s(x∗) = s(x)]

p(x∗|θ)p(θ)
= I [s(x∗) = s(x)]

Notice that it doesn’t require calculation of p(x|θ).

ABC is sometimes called likelihood-free inference.



Approximate Bayesian Computation

ABC comes with a caveat.

Simulating pseudo-data x∗ which is similar to x can be difficult.
Finding a sufficient statistics can also be a problem.

The ABC algorithm can be extended to augment the target even
further...

p(θ, x∗, ε|x) ∝ p(x|θ)p(θ)I [d(x∗, x) < ε].

This relaxes the need for x∗ to be ‘identical’ to x.



Other approaches

Thermodynamic integration

z(θ′)

z(θ)
=

∫ θ′

θ
E log q(x|θ∗) dθ∗

Variational approximations

The variational approach is to propose a simple structural form for
the approximation, q(x|θ).

θ̂ = arg min
θ

KL [p(x|θ)||q(x|θ)]

Sequential Monte Carlo

The sequential Monte Carlo approach of (Del Moral et al., 2006)
should be useful in these contexts also.


