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Social networks

A Social Network consists of individuals (or organisations)
represented by nodes of a graph.

Individuals which are connected by some sort of dependency eg
friendship, business relationship, common interest etc, are joined
by an edge.

The resultant graphs can be very complex. The statistical
challenge is to model such networks probabilistically, predict
behaviour of the networks, model networks across time etc etc...
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Networks are everywhere!
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An example: Zachary karate club

34 members of a university karate club
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Scientific collaborations
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High school dating
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Random graph models

Random graph models go back at least to the 1950’s.

The Erdös-Rényi model allows edges to form independently of one
another with equal probability.

Let yij = 1 denote an edge connecting nodes i and j .

yij ∼ Bernoulli (p) with log odds θ.

π(y|θ) ∝ exp

θ∑
i ,j

yij

 .
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Random graph models

Let G (n, p) denote an Erdös-Rényi model with n nodes and
Bernoulli probability p.

It is clearly a simple description of what happens in reality, yet it
does have some nice properties.

• The degree distribution for any vertex is binomial

π(xi = k) =

(
n − 1

k

)
pk (1− p)n−1−k .

• If np < 1, then a G (n, p) graph will have no connected
components of size larger than O(log n), a.s.

• If np = 1, then a G (n, p) graph will have a largest component
whose size is of order n2/3, a.s.

• This model has some nice properties which are respected by
subgraphs, eg connectedness.



university-logo

The exponential random graph model

First proposed by Frank and Strauss (JASA, 1986).

1. Edges yij and ykl are neighbours of one another, if they share
a common node.

2. If yij and ykl are not neighbours, then yij and yij are
conditionally independent, given the rest of the graph.
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The p∗ model

π(y|θ) =
exp{θts(y)}

z(θ)
=

q(y|θ)

z(θ)

• y observed graph
• s(y) known vector of sufficient statistics
• θ vector of parameters
• z(θ) normalizing constant

z(θ) =
∑

all possible graphs

exp{θts(y)}

• 2(n
2) possible undirected graphs of n nodes

• Calculation of z(θ) is infeasible for non-trivially small graphs
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4-dimensional model

π(y|θ) ∝ 1

z(θ)
exp

{
4∑

i=1

θi si (y)

}
π(θ)

s1(y) =
∑

i<j yij number of edges

s2(y) =
∑

i<j<k yikyjk number of two-stars

s3(y) =
∑

i<j<k<l yilyjlykl number of three-stars

s4(y) =
∑

i<j<k yikyikyij number of triangles
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Pseudolikelihood
(Besag 1974, Strauss & Ikeda 1990)

π(y|θ) ≈ πpseudo(y|θ) =
∏
i 6=j

π(yij |y−ij ,θ)

• y−ij all the graph excluding yij

• Assumption of weak dependence between the variables

• Generally inadequate since it only uses local information
whereas the graph is affected by global interaction
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Monte Carlo maximum likelihood
(Geyer & Thompson 1992)

Ey|θ0

[
q(y|θ)

q(y|θ0)

]
=
∑
y

q(y|θ)

q(y|θ0)

q(y|θ0)

z(θ0)
=

z(θ)

z(θ0)

• θ0 is fixed vector of parameters

• Ey|θ0
expectation with respect to π(y|θ0)

z(θ)

z(θ0)
= Ey|θ0

[
q(y|θ)

q(y|θ0)

]
= Ey|θ0

[
exp

{
(θ − θ0)ts(y)

}]
≈ 1

m

m∑
i=1

exp
{

(θ − θ0)ts(yi )
}
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Monte Carlo maximum likelihood (cont’d)

Therefore

log

{
π(y|θ0)

π(y|θ)

}
≈ (θ−θ0)ts(y)−log

{
1

m

m∑
i=1

exp
[
(θ − θ0)ts(yi )

]}

• Very sensitive to the choice of θ0 that should be close to the
MLE of θ

• A poorly chosen value of θ0 may lead to a function that may
not even have a maximum

• Often θ0 is chosen as the maximiser of the pseudolikelihood
function
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Model degeneracy
(Handcock 2003, Rinaldo, Fienberg & Zhou 2009)

• C convex hull of the set {s(y) : y ∈ Y}
• ri(C ) relative interior

• rbd(C ) relative boundary

• Mean value parametrisation: µ(θ) = E[s(y)]

The model is near degenerate if µ(θ) is close to rbd(C )

• In practice most of π(y|θ) is placed on a few configurations
(eg empty graphs, full graphs,. . . )

• In such instances, inference is problematic
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Model degeneracy (cont’d)

Results

• the MLE exists and it is unique ⇔ s(y) ∈ ri(C )

• if s(y) ∈ rbd(C ) ⇒ the MLE does not exist

MC-MLE may fail

• It may be difficult to choose θ0 far from degeneracy and close
to MLE

• Parameter values in the near degenerate region can hinder the
convergence of common MCMC algorithms

• Simulating from y|θ0 may yield graphs which are full or empty
thereby leading to a poor estimate of z(θ)/z(θ0)

• MC-MLE may have high variance and may not exist
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Bayesian inference

Doubly-intractable posterior

π(θ|y) ∝ π(y|θ)π(θ)

• Näıve Metropolis-Hastings algorithm proposes the move from
θ to θ∗ with probability:

α = min

1,
q(y|θ∗)π(θ∗)

q(y|θ)π(θ)
× z(θ)

z(θ∗)︸ ︷︷ ︸
intractable
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Exchange algorithm
(Murray, Ghahramani & MacKay 2006)

Sample from an augmented distribution

π(θ′, y′,θ|y) ∝ π(y|θ)π(θ)h(θ′|θ)π(y′|θ′)

whose marginal distribution for θ is the posterior of interest

• π(y′|θ′) same distribution as the original one on which y is
defined

• h(θ′|θ) arbitrary distribution for the augmented variable θ′

which might depend on θ (eg random walk distribution
centred at θ)
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Exchange algorithm (cont’d)

How it works

1 Gibbs update of (θ′, y′)
i Draw θ′ ∼ h(·|θ)
ii Draw y′ ∼ π(·|θ′)

2 Exchange move from (θ, y), (θ′, y′) to (θ′, y), (θ, y′)
with probability

α = min

1,
q(y′|θ)

q(y|θ)︸ ︷︷ ︸
∗

π(θ′)

π(θ)

h(θ|θ′)
h(θ′|θ)

q(y|θ′)
q(y′|θ′)︸ ︷︷ ︸
∗∗

× z(θ)z(θ′)

z(θ)z(θ′)︸ ︷︷ ︸
1


• Exchange move proposes to “offer” the data y the auxiliary θ′

and similarly to “offer” the auxiliary data y′ the parameter θ
• The affinity between θ′ and y is measured by (**) and the

affinity between θ and y′ by (*)
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MCMC sample from the p∗ model

• The main difficulty is the need to draw an exact sample
y′ ∼ π(·|θ′)

• Perfect sampling is an obvious approach, if this is possible

• A pragmatic alternative is to take a realisation from a long
MCMC run with stationary distribution π(y′|θ′) as an
approximate draw
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Importance sampling

MH ratio in the Exchange algorithm (h(·|θ) symmetric)

q(y|θ′)π(θ′)

q(y|θ)π(θ)

q(y′|θ)

q(y′|θ′)

Standard MH ratio:

q(y|θ′)π(θ′)

q(y|θ)π(θ)

z(θ)

z(θ′)

q(y′|θ)/q(y′|θ′) importance sampling estimate of z(θ)/z(θ′) since

Ey′|θ′
q(y′|θ)

q(y′|θ′)
=
∑

y

q(y′|θ)

q(y′|θ′)
q(y′|θ′)
z(θ′)

=
z(θ)

z(θ′)
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Mixing of the Markov chain

Assuming π(·) very flat and h(·) symmetric

logα ≈ min

0, (θ − θ′)t
[
s(y′)− s(y)

]︸ ︷︷ ︸
disparity measure


• Acceptance probability is high when ||s(y′)− s(y)|| is close to

0

• A move of θ′ to the degenerate region usually produces a
disproportionate increase of ||s(y′)− s(y)|| thus reducing the
probability of accepting the move

• If we reach high probability region, the algorithm would not
tend to allow excursions into degenerate regions
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Mixing of the Markov chain (cont’d)
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Mixing of the Markov chain (cont’d)
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Mixing of the Markov chain (cont’d)
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Mixing of the Markov chain (cont’d)
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Connection with Approximate Bayesian Computation
(ABC)

• Likelihood-free method handling distributions with intractable
normalising constants

• Both rely on proposing new θ′ and simulating y′|θ′

• Proposed move to θ′ is accepted if there is good agreement
between auxiliary data and observed data in terms of
summary statistics

• In ABC, θ′ is accepted if this distance is sufficiently small

• Good approximation to the true posterior is guaranteed by the
fact that the summary statistics are sufficient statistics of the
probability model
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Implementing the algorithm
Implementation by existing software (eg statnet package for R)

Initialise:

y.obs # observed graph

s(y.obs) # observed statistics

theta # initial value of the chain

loop # no. of iterations

h # (symmetric) proposal

prior # prior distribution

for i in 0:loop

Single site update:

draw theta’ from h(theta[i])

pr <- prior(theta’) / prior(theta[i])

simulate y’ conditional on theta’
delta <- s(y’) - s(y.obs)

alpha <- (theta[i] - theta’) * delta + log(pr)

u <- log RandomU(0,1)

if(alpha >= u)

set theta[i+1] <- theta’

else

set theta[i+1] <- theta[i]
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Example 1: Florentine family business

Business relations between 16 families in around 1430
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Two-star model

MC-MLE failed

π(y|θ) =
1

z(θ)
exp

θ1

∑
i<j

yij + θ2

∑
i<j<k

yikyjk


Exchange algorithm

π(θ|y) ∝ exp

θ1

∑
i<j

yij + θ2

∑
i<j<k

yikyjk

π(θ)

h(·|θ) ∼ N (θ,Ψ) and π(θ) ∼ N (0, σ)

Ψ =

[
1 0
0 0.1

]
and σ = 30
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MCMC Output
 Post. density of !1
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Parameters post. mean post. sd
θ1 2.40 0.47
θ2 0.10 0.11

• Single-site Gibbs update, acceptance rates: 19% and 15%

• 30, 000 iterations for the main chain, 5, 000 iterations for the
auxiliary chain
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Remarks
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• High correlation between the parameters

• Long time to explore the entire posterior distribution

• Slow mixing of the chain
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Remarks (cont’d)
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• dots: 2, 000 proposed graphs (thinned by a factor of 15 from
30, 000)

• red dots: graphs whose parameters were accepted

• orange line: observed graph
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Example 2: Synthetic network

Elongated-shaped graph of 20 nodes (ergm package for R)
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4-dimensional model

π(y|θ) ∝ 1

z(θ)
exp

{
4∑

i=1

θi si (y)

}
π(θ)

s1(y) =
∑

i<j yij number of edges

s2(y) =
∑

i<j<k yikyjk number of two-stars

s3(y) =
∑

i<j<k<l yilyjlykl number of three-stars

s4(y) =
∑

i<j<k yikyikyij number of triangles

h(·|θ) ∼ N (θ,Ψ), π(θ) ∼ N (0, σ)

Ψ =


2 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.3

 and σ = 30
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MCMC output
 Post. density of !1
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Parameters post. mean post. sd
θ1 2.12 2.61
θ2 -0.77 0.86
θ3 -0.22 0.43
θ4 1.59 0.59

• Single-site Gibbs update, acceptance rates around 10%

• 400, 000 iterations for the main chain, 5, 000 iterations for the
auxiliary chain
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Population MCMC can improve mixing

Here we consider a collection of chains which interact with one
another.

State space: {(θ1, θ2, . . . , θn)} with target distribution
π(θ1|y)⊗ · · · ⊗ π(θn|y).

”snooker move” (at iteration i):

θh
i+1 = θh

i + γ
(
θh

i − θh+1
i

)
+ ε γ ∼ N(0, σγ) ε ∼ N(0, σε)
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Output from population MCMC
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Goodness-of-fit test
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100 graphs are simulated from 100 realisations taken from the
estimated posterior distribution and compared to the observed
graph in terms of high-level characteristics
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Example 3: Zachary karate club

34 members of a university karate club
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High correlation, slow mixing

edges
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Model with new specifications statistics

π(θ|y) ∝ 1

z(θ)
exp {θ1s1(y) + θ2u(y, φ) + θ3v(y, φ)}π(θ)

s1(y) =
∑

i<j yij number of edges

u(y, φ) = eφ
∑n−1

i=1

{
1−

(
1− e−φ

)i
}

Di (y) GWD

v(y, φ) = eφ
∑n−2

i=1

{
1−

(
1− e−φ

)i
}

EPi (y) GWESP

h(·|θ) ∼ N (θ, ψ), π(θ) ∼ N (0, σ)

Ψ =

0.7 0 0
0 1.2 0
0 0 0.07

 , σ = 30, and φ = 0.2
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MCMC output
 Post. density of θ1
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Parameters post. mean post. sd

θ1 -3.84 0.38

θ2 5.77 3.22

θ3 1.35 0.26

• Single-site Gibbs update, acceptance rates: 14%, 16%, and 14%

• 120, 000 iterations for the main chain, 10, 000 iterations for the
auxiliary chain
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Goodness-of-fit test
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Summary

• A crucial aspect of MC-MLE is the choice of θ0

• MC-MLE may fail due to a poorly choosen θ0

• Model degeneracy is an important obstacle to estimation

• Exchange algorithm overcomes the problem of the choice of θ0

• Good approximation is guaranteed by the agreement between
simulated and observed graphs in terms of sufficient statistics

• A thin and correlated support of the posterior can cause slow
mixing of the chain (an appropriate design of the MCMC
procedure can overcome this)

• Computationally intensive but it can be easily developed by
existing software (eg statnet package for R)
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