Bayesian Mixture Model Clustering for genotyping of DNA Copy Number Variants

Eleni Giannoulatou

Department of Statistics, Oxford University

August 28, 2009

Human Genome and Genomic Variation

About the human genome:

- It is stored in 23 chromosomes.
- It contains 3 billion chemical nucleotide bases (A, C, T, and G).
- Less than 2% of the genome codes for protein.
- The total number of genes is estimated at around 30,000.
- Genomic variation between individuals can determine phenotypic diversity and disease susceptibility.

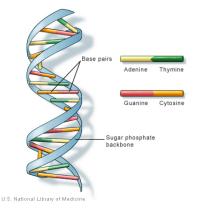
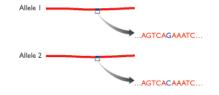
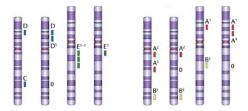


Figure: DNA structure

Variation in the human genome

- Single Nucleotide Polymorphism (SNP): Single base pair position in genomic DNA at which different sequence alternatives (alleles) exist in normal individuals in some population(s).
- Copy Number Variation (CNV): DNA fragment that is > 1 kilobases (kb) and is found in variable copy number in comparison with a reference genome

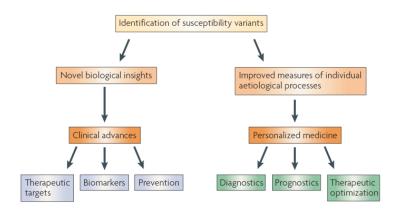




Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

SNPs/CNVs: Why are they important?

- Variation in the DNA sequence can affect disease development as well as response to pathogens, drugs, vaccines.
- Dense maps of SNPs are used in Genome-wide Association Studies: looking for allele-frequency differences between cases (patients with a specific disease) and controls



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Genome-Wide Association studies using SNPs

Medical field	GWA studies, n	Key novel loci	
phthalmology			
Age-related macular degeneration	1	CFH	
Glaucoma	1	LOXL1	
indocrinology			
Type 2 diabetes	11	TCF7L2 and CDKAL1	
Obesity	5	INSIG2 and FTO	
Height	2	HMGA2 and GDF5-UQCC	
Cardiology			
Heart disease	4	CDKN2A / CDKN2B	
Atrial fibrillation	1	PITX2	
Lipids	3	MLXIPL	
Dncology			
Prostate cancer	3	8q24	
Colorectal cancer	3	8q24 and SMAD7	
Breast cancer	3	FGFR2 and TOX3 (TNRC9)	
Neuroblastoma	1	FLJ22536/FLJ44180	
immunology			
Inflammatory bowel disease	4	IL23R and ATG16L1	
Asthma	1	ORMDL3	
Type 1 diabetes	2	CLEC16A (KIAA0350) and 12q13	
Ankylosing spondylitis	1	ERAP1 (ARTS1) and IL23R	
Systemic lupus erythematosus	4	ITGAM and BANK1	
Rheumatoid arthritis	2	TRAF1/C5, and TNFAIP3/OLIG3	
Multiple sclerosis	1	IL7R and IL2RA	
Celiac disease	1	IL2/IL21	
Host control of HIV-1	1	HLA-B*5701	
Veurology			
Restless legs syndrome	2	BTBD9	
Amyotrophic lateral sclerosis	3	DPP6	
Dther			
Gallstones	1	ABCG8	
Fetal hemoglobin	2	BCL11A	

Table 1. Key novel genetics findings using GWA in various complex disease (and related) traits,

Genome-Wide Association studies using CNVs

Locus	CNV frequency	Clinical phenotype	CNV type	Risk estimate (odds ratio)	Comments
CCL3L1 [9,11]	10-20%	HIV/AIDS susceptibility [9]	Deletion	0.67-0.90	CCL3L1 inhibits HIV cellular
	Rheumatoid arthritis [11]	Gain: >2 copies	1.34	entry [50]. Higher CCL3L1 number	
					increases CCL3L1 expression [49]
FCGR3B [10]	Deletion: ~25%	Systemic autoimmune disease	Deletion	1.58-2.56 ^a	CNV associated with
Gain: ~15%				glomerulonephritis in rats and	
					humans [51]
C4 [12]	~ 40%	Systemic lupus erythematosus	Deletion	Absence: 5.27	>75% of C4 or C1 deletion carriers have
				Carrier: 1.61	SLE-like disease [12]. Strongest SLE
				Gains: 0.57	genetic risk factor thus far in
				blacks [52]	
DEFB4 [33,34]	2-12 copies (median 4)	Colonic Crohn disease [33]	Loss: <4 copies	3.06	↓ number associated with ↓ mucosal
		Psoriasis [34]	Gain: >5 copies	1.69	gene expression. [33]
GSTM1 [13-16]	Up to 50%	Asthma, lung function, allergic response	Deletion	1.59-1.89	Potent antioxidant. Deletion related to
					many adverse asthma-related
					outcomes (see text).

Genomics 93 (2009) 22-26

SNP/CNV genotyping

- Identification of the allelic states of SNPs/CNVs in a large number of individuals.
- The set of alleles that a person has is called a genotype. For this SNP a person could have the genotype AA, AG, or GG.

Figure: A part of two chromosomes showing a SNP.

- There are estimated to be 10 million SNPs in the genome more than 3 million have been charted (International HapMap Project).
- CNV discovery is still in progress!

SNP genotyping – Illumina BeadArray platform

 BeadArray data consist of two channel intensity data that correspond to the two alleles.

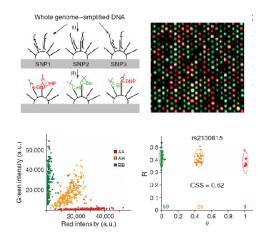
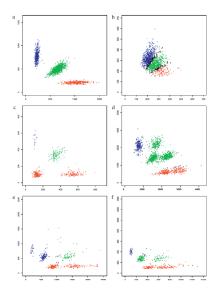


Figure: SNP genotyping using BeadArray Infinium II assay.

Nature Methods 3, 31 - 33 (2006)

Signal Intensity plots



BBBB ABBB ABB (AABB) ABB (AABB) AAB AAAB) AAB AAAA AAA AAAA

Figure: Combined SNP/CNV information

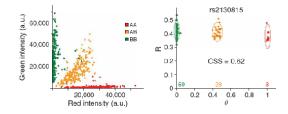
ж

Figure: High and low genotyping quality

SNP genotyping algorithms

- Each SNP is interrogated in turn, clustering the allele-specific probe intensities in three classes.
- Reason: Probe intensities vary on a SNP-by-SNP basis.
- Limitations:
 - 1. Big reference population is needed for SNPs with low MAF. (10,000 samples for a SNP with MAF=1%)
 - 2. Model parameters must be recalibrated each time the SNP content of an array is modified or a new genotyping array is produced.

GenoSNP: Main principle



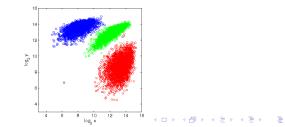
- High quality SNP genotyping within a sample is enabled without the need for a reference population.
- Inter-class variation is maximized by accounting for dye-specific and bead-specific effects:
 - Clustering is done on the intensities log₂(x + 1), log₂(y + 1) for each beadpool separately.
- Bayesian Mixture Model using Variational Bayes

Giannoulatou E, Yau C et al, Bioinformatics. 2008 24(19):2209-14

 $\mathbf{x}_n = \{\log_2(x_n + 1), \log_2(y_n + 1)\}$: the vector of log intensities for the *n*th SNP. The distribution of the intensities is modelled using a 4-component mixture of Student-*t* distributions

$$egin{aligned} p(\mathbf{x}_n) &= \sum_{m=1}^4 \pi_m \mathcal{S}_m(\mathbf{x}_n; oldsymbol{\mu}_m, oldsymbol{\Lambda}_m,
u) \ &\sum_{m=1}^4 \pi_m = 1 \end{aligned}$$

Each component corresponds to either one of the three genotype classes AA, AB and BB or a null class to capture outliers.



- ► The SMM can be viewed as a latent variable model as the component label for each data point is unobserved z_{nm} ∈ 0, 1.
- The observed data is still incomplete the Student-t distribution can be rewritten:

$$\mathcal{S}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) = \int_0^\infty \mathcal{N}(\mathbf{x}| \boldsymbol{\mu}, u \boldsymbol{\Lambda}) \mathcal{G}\left(u \left| \frac{\nu}{2}, \frac{\nu}{2} \right) du.$$

 The scaling factor is an implicit latent variable on which Gamma prior is imposed.

For each data point **x** and for each component *m*, the scale variable u_{nm} given z_{nm} is unobserved. The latent variable model is:

$$p(\mathbf{z}_n| heta) = \prod_{m=1}^4 \pi_m^{z_{nm}}$$

$$p(\mathbf{u}_n | \mathbf{z}_n, \theta) = \prod_{m=1}^{4} \mathcal{G} \left(u_{nm} \left| \frac{\nu_m}{2}, \frac{\nu_m}{2} \right)^{z_{nm}} \right)$$
$$p(\mathbf{x}_n | \mathbf{u}_n, \mathbf{z}_n, \theta) = \prod_{m=1}^{4} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_m, u_{nm} \boldsymbol{\Lambda}_m)^{z_{nm}}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The prior for the mixture weight is given by a Dirichlet distribution

$$p(\pmb{\pi}|\pmb{\kappa}) \propto \prod_{m=1}^4 \pi_m^{(\kappa_m-1)},$$

and a Normal-Wishart prior used to define the location and scale parameters for each genotype mixture component

$$p(\mu_m, \Lambda_m) = \mathcal{N}(\mu_m | \mathbf{m}_0, \eta_0 \Lambda_m) \mathcal{W}(\Lambda_m | \gamma, \mathbf{S}_m)$$

The location and scale parameters of the null class are fixed and set to values to make the distribution relatively flat over the feature space.

GenoSNP: Posterior Inference

Variational Bayes EM algorithm:

Minimisation of the Kullback-Leibler divergence between the true posterior distribution $p(\theta, \mathbf{z}, \mathbf{u} | \mathbf{x})$ and the variational approximation $q(\theta, \mathbf{z}, \mathbf{u})$

$$\mathit{KL}(q,p)\equiv\int q(heta,\mathsf{z},\mathsf{u})\lograc{p(heta,\mathsf{z},\mathsf{u},\mathsf{x})}{q(heta,\mathsf{z},\mathsf{u})}d heta.$$

Assumption: $q(\theta, \mathbf{z}) = q_{\theta}(\theta)q_{\mathbf{z}}(\mathbf{z}, \mathbf{u})$. The VB-EM steps are:

$$q_{\mathsf{z}\mathsf{u}}^{(t+1)}(\mathsf{z},\mathsf{u}) \propto \exp\left(E_{\theta}[\log p(\mathsf{x},\mathsf{u},\mathsf{z}|\theta)]\right) \tag{1}$$

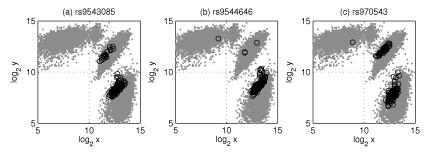
$$q_{\theta}^{(t+1)}(\theta) \propto p(\theta) \exp(E_{\mathbf{z},\mathbf{u}}[\log p(\mathbf{z},\mathbf{u},\mathbf{x}|\theta)])$$
(2)

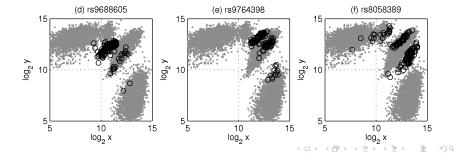
Expressions for the exact parameter updates are given in (Archambeau and Verleysen, 2007)

Table: Comparison of call rates and accuracy on 120 Hapmap samples genotyped on the HumanHap300Duo BeadChip

Method	Call Rate	False Calls	No Calls	Call Accuracy
	(%)			(%)
GenCall	99.799	38,911	73,295	99.694
Illuminus	99.819	89,025	66,199	99.576
GenoSNP	99.660	88,249	124,613	99.419
GenoSNP-VB	100.000	94,380	143	99.742

GenoSNP: Results





GenoSNP: Results

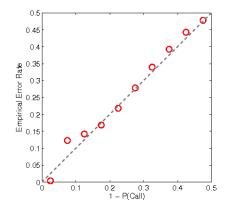


Figure: GenoSNP genotype probabilities are well calibrated with empirical error rates.

<ロト <回ト < 注ト < 注ト

æ

CNV calling: Motivation

- Identification of the CNV allelic state of every individual in a cohort.
- The copy number is not assumed to be diploid as in SNP genotyping algorithms but it is inferred. Hence the number of clusters in the data needs to be estimated.
- A mixture model with an excess number of components has the greatest chance of capturing all the true clusters in the data.
- A backward selection procedure can be applied that starting from a excess number of clusters it combines every two clusters and selects for merging the pair with the highest marginal likelihood.

Backward Deletion Procedure and Model Selection

- (a) Initialise the cluster centres uniformly from min(x) to max(x).
- (b) For $M = M_{max}$ to 2:
 - 1. Use VB-EM to optimise the hyperparameters.
 - ▶ 2. For every pair of clusters (*i*, *j*), propose to combine the *j*th cluster with the *i*th cluster.:
 - ► i. Compute a weighted average of the weights, centres and variances for the components *i* and *j*.
 - ii. Calculate the approximate log marginal likelihood using the new parameters for the new combined cluster having the *i* and *j*th cluster removed from the model.
 - ► 3. Select the pair (i, j) that has the largest log marginal likelihood and accept this merge.
- (c) Select M that gives the highest log Bayes Factor
 BF = log ^{p(×|M)}/_{p(×|M=2)}

Backward Deletion Procedure and Model Selection

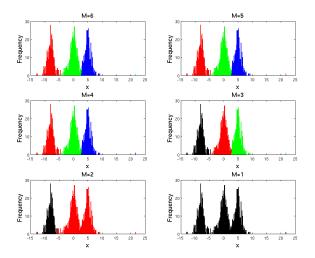


Figure: Histograms of the data showing cluster assignment for number of cluster M = 1, ..., 6 (excluding the outlier class).

CNV Clustering results: Model Selection

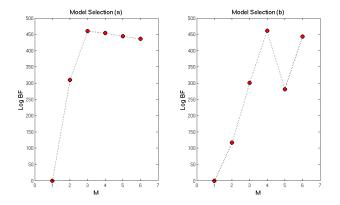


Figure: Log Bayes Factor for each Model (M=1,...6) (a) when we apply Backward Selection of clusters and (b) with no Backward Selection.

Summary

- GenoSNP: a Variational Bayes SNP genotyping algorithm that is able to call genotypes within sample with comparable accuracy to other population-based genotyping algorithms.
- CNV calling method in 1D for targeted studies using robust Bayesian Mixture Model Clustering and Backward Selection of clusters.

Acknowledgements

- Christopher Yau and Chris Holmes (Statistics)
- Chris Holmes/Jotun Hein Groups (Statistics)
- Jiannis Ragoussis and Stefano Collela (Wellcome Trust Centre for Human Genetics)