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Human Genome and Genomic Variation

About the human genome:

I It is stored in 23 chromosomes.

I It contains 3 billion chemical
nucleotide bases (A, C, T, and G).

I Less than 2% of the genome codes
for protein.

I The total number of genes is
estimated at around 30,000.

I Genomic variation between
individuals can determine
phenotypic diversity and disease
susceptibility.

Figure: DNA structure



Variation in the human genome

I Single Nucleotide Polymorphism
(SNP): Single base pair position in
genomic DNA at which different
sequence alternatives (alleles)
exist in normal individuals in some
population(s).

I Copy Number Variation (CNV):
DNA fragment that is > 1
kilobases (kb) and is found in
variable copy number in
comparison with a reference
genome



SNPs/CNVs: Why are they important?
I Variation in the DNA sequence can affect disease development

as well as response to pathogens, drugs, vaccines.
I Dense maps of SNPs are used in Genome-wide Association

Studies: looking for allele-frequency differences between cases
(patients with a specific disease) and controls

Nature Reviews Genetics 9:356-369



Genome-Wide Association studies using SNPs

Clinical Chemistry 54:7 (2008)



Genome-Wide Association studies using CNVs

Genomics 93 (2009) 22–26



SNP/CNV genotyping

I Identification of the allelic states of SNPs/CNVs in a large
number of individuals.

I The set of alleles that a person has is called a genotype. For
this SNP a person could have the genotype AA, AG, or GG.

Figure: A part of two chromosomes showing a SNP.

I There are estimated to be 10 million SNPs in the genome -
more than 3 million have been charted (International HapMap
Project).

I CNV discovery is still in progress!



SNP genotyping – Illumina BeadArray platform
I BeadArray data consist of two channel intensity data that

correspond to the two alleles.

Figure: SNP genotyping using BeadArray Infinium II assay.

Nature Methods 3, 31 - 33 (2006)



Signal Intensity plots

Figure: High and low genotyping quality

Figure: Combined SNP/CNV information



SNP genotyping algorithms

I Each SNP is interrogated in turn, clustering the allele-specific
probe intensities in three classes.

I Reason: Probe intensities vary on a SNP-by-SNP basis.
I Limitations:

1. Big reference population is needed for SNPs with low MAF.
(10,000 samples for a SNP with MAF=1%)

2. Model parameters must be recalibrated each time the SNP
content of an array is modified or a new genotyping array is
produced.



GenoSNP: Main principle

I High quality SNP genotyping within a sample is enabled
without the need for a reference population.

I Inter-class variation is maximized by accounting for
dye-specific and bead-specific effects:

I Clustering is done on the intensities log2(x + 1), log2(y + 1)
for each beadpool separately.

I Bayesian Mixture Model using Variational Bayes

Giannoulatou E, Yau C et al, Bioinformatics. 2008 24(19):2209-14



GenoSNP: Statistical Model
xn = {log2(xn + 1), log2(yn + 1)} : the vector of log intensities for
the nth SNP. The distribution of the intensities is modelled using a
4-component mixture of Student-t distributions

p(xn) =
4∑

m=1

πmSm(xn; µm,Λm, ν)

4∑
m=1

πm = 1

Each component corresponds to either one of the three genotype
classes AA, AB and BB or a null class to capture outliers.

Figure: SNP genotyping using BeadArray Infinium II assay.



GenoSNP: Statistical Model

I The SMM can be viewed as a latent variable model as the
component label for each data point is unobserved znm ∈ 0, 1.

I The observed data is still incomplete – the Student-t
distribution can be rewritten:

S(x; µ,Λ, ν) =

∫ ∞
0
N (x|µ, uΛ)G

(
u

∣∣∣∣ν2 , ν2
)

du.

I The scaling factor is an implicit latent variable on which
Gamma prior is imposed.



GenoSNP: Statistical Model

For each data point x and for each component m, the scale
variable unm given znm is unobserved. The latent variable model is:

p(zn|θ) =
4∏

m=1

πznm
m

p(un|zn, θ) =
4∏

m=1

G
(

unm

∣∣∣∣νm

2
,
νm

2

)znm

p(xn|un, zn, θ) =
4∏

m=1

N (xn|µm, unmΛm)znm



GenoSNP: Statistical Model

The prior for the mixture weight is given by a Dirichlet distribution

p(π|κ) ∝
4∏

m=1

π
(κm−1)
m ,

and a Normal-Wishart prior used to define the location and scale
parameters for each genotype mixture component

p(µm,Λm) = N (µm|m0, η0Λm)W(Λm|γ,Sm)

The location and scale parameters of the null class are fixed and
set to values to make the distribution relatively flat over the
feature space.



GenoSNP: Posterior Inference

Variational Bayes EM algorithm:
Minimisation of the Kullback-Leibler divergence between the true
posterior distribution p(θ, z,u|x) and the variational approximation
q(θ, z,u)

KL(q, p) ≡
∫

q(θ, z,u) log
p(θ, z,u, x)

q(θ, z,u)
dθ.

Assumption: q(θ, z) = qθ(θ)qz(z,u). The VB-EM steps are:

q
(t+1)
zu (z,u) ∝ exp (Eθ[log p(x,u, z|θ)]) (1)

q
(t+1)
θ (θ) ∝ p(θ) exp(Ez,u [log p(z,u, x|θ)]) (2)

Expressions for the exact parameter updates are given in (Archambeau and Verleysen, 2007)



GenoSNP: Results

Table: Comparison of call rates and accuracy on 120 Hapmap samples
genotyped on the HumanHap300Duo BeadChip

Method Call Rate False Calls No Calls Call Accuracy
(%) (%)

GenCall 99.799 38,911 73,295 99.694
Illuminus 99.819 89,025 66,199 99.576
GenoSNP 99.660 88,249 124,613 99.419
GenoSNP-VB 100.000 94,380 143 99.742



GenoSNP: Results

Figure: Six examples showing Illuminus and GenoSNP-VB genotyping
failures.



GenoSNP: Results

Figure: GenoSNP genotype probabilities are well calibrated with empirical
error rates.



CNV calling: Motivation

I Identification of the CNV allelic state of every individual in a
cohort.

I The copy number is not assumed to be diploid as in SNP
genotyping algorithms but it is inferred. Hence the number of
clusters in the data needs to be estimated.

I A mixture model with an excess number of components has
the greatest chance of capturing all the true clusters in the
data.

I A backward selection procedure can be applied that starting
from a excess number of clusters it combines every two
clusters and selects for merging the pair with the highest
marginal likelihood.



Backward Deletion Procedure and Model Selection

I (a) Initialise the cluster centres uniformly from min(x) to
max(x).

I (b) For M = Mmax to 2:
I 1. Use VB-EM to optimise the hyperparameters.
I 2. For every pair of clusters (i , j), propose to combine the jth

cluster with the ith cluster.:
I i. Compute a weighted average of the weights, centres and

variances for the components i and j .
I ii. Calculate the approximate log marginal likelihood using the

new parameters for the new combined cluster having the i and
jth cluster removed from the model.

I 3. Select the pair (i , j) that has the largest log marginal
likelihood and accept this merge.

I (c) Select M that gives the highest log Bayes Factor

BF = log p(x |M)
p(x |M=2)



Backward Deletion Procedure and Model Selection

Figure: Histograms of the data showing cluster assignment for number of
cluster M = 1, ..., 6 (excluding the outlier class).



CNV Clustering results: Model Selection

Figure: Log Bayes Factor for each Model (M=1,...6) (a) when we apply
Backward Selection of clusters and (b) with no Backward Selection.



Summary

I GenoSNP: a Variational Bayes SNP genotyping algorithm that
is able to call genotypes within sample with comparable
accuracy to other population-based genotyping algorithms.

I CNV calling method in 1D for targeted studies using robust
Bayesian Mixture Model Clustering and Backward Selection of
clusters.
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