Pattern Matching, Entropy and Biological Sequence Analysis

> Ioannis Kontoyiannis Athens U of Econ & Business

> > Greek Stochastics α'

Lefkada, Greece, August 2009 AMX/EDT

I. Exact Pattern Matching & Lossless Data Compression

Waiting times and match lengths Strong approximation The AEP and its refinements

II. Approximate Pattern Matching & Lossy Data Compression

Large deviations Finer asymptotics The generalized AEP and its refinements

Example 1: Lossless Data Compression

message: $X_1 X_2 \cdots X_n$ database: $Y_1 Y_2 Y_3 \cdots Y_W Y_{W+1} \cdots Y_{W+n-1} \cdots$ Compression algorithm [Wyner-Ziv 89]: Describe (X_1, X_2, \dots, X_n)

as the position W_n of its first appearance in the database $(Y_1, Y_2, ...)$ E.g. $(n = 5 \text{ and } W_n = 15)$:

Question

What is the *rate* of this algorithm?

Answer

$$\approx \frac{\log W_n}{n} \to H$$
, the entropy rate of $\{X_n\}$, a.s

Second Example: DNA Template Matching

template: $X_1 X_2 \cdots$

sequence: $Y_1 Y_2 Y_3 \cdots Y_m$

Matching algorithm: Find longest initial string $(X_1, X_2, \ldots, X_{L_m})$ matching somewhere into (Y_1, Y_2, \ldots, Y_m) with $\leq 15\%$ mismathces

E.g. $(m = 18 \text{ and } L_m = 8)$:

QuestionWhat is an "atypically" large L_m ?Answer via Duality $L_m \ge n$ iff $\inf_{k\ge n} W_k \le m$ $\log W_n$ $L_m = 1$

$$\frac{\log W_n}{n} \to R \text{ a.s.} \qquad \Rightarrow \qquad \frac{L_m}{\log m} \to \frac{1}{R} \text{ a.s}$$

Exact Pattern Matching & Lossless Data Compression

- → Waiting times (and recurrence times)
- \rightsquigarrow Strong approximation: $W_n \approx \frac{1}{P(X_1, X_2, \dots, X_n)}$
- \rightsquigarrow The Asymptotic Equipartition Property (AEP)
 - \sim First-order asymptotics of W_n ; optimality of LZ compression
- \rightsquigarrow Refinements of the AEP
 - \sim Second-order asymptotics of W_n ; LZ optimality revisited
- \rightsquigarrow Duality and match lengths
 - \rightsquigarrow More realistic LZ compression and optimality
 - \rightsquigarrow Second-order asymptotics for match lengths

The Setting

Let

 $X = \{X_1, X_2, \ldots\}$ be finite-valued, stationary, ergodic process with distribution P and values in A

 $Y = \{Y_1, Y_2, \ldots\}$ be finite-valued, stationary, ergodic process with distribution Q and values in A

Write

$$X_m^n = (X_m, X_{m+1}, \dots, X_n), \quad 1 \le m \le n \le \infty$$

 $x_m^n = (x_m, x_{m+1}, \dots, x_n), \quad 1 \le m \le n \le \infty, \text{ etc}$

Define The waiting time $W_n = \inf\{k \ge 1 : X_1^n = Y_k^{k+n-1}\}$ $X_1 X_2 \cdots X_n$ $Y_1 Y_2 Y_3 \cdots Y_W Y_{W+1} \cdots Y_{W+n-1} \cdots$

Problem How does W_n behave as $n \to \infty$?

Strong Approximation: $W_n \approx \frac{1}{Q(X_1^n)}$

Intuition

We expect W_n to be close to the reciprocal of the probability that the pattern X_1^n appears in \boldsymbol{Y} , i.e., $W_n \approx \frac{1}{Q(X_1^n)}$

Theorem 1: Strong Approximation [K 98][Dembo-K 99][Chi 01] If Y has either $\psi(k) \to 0$ or $\sum_k \phi(k) < \infty$, then: $\log [W_n Q(X_1^n)] = O(\log n)$ a.s.

$$\begin{aligned} \text{Recall:} \quad \psi(k) \;\; = \;\; \sup \left\{ \left| \frac{Q(B|A)}{Q(B)} - 1 \right| \; : \;\; B \in \sigma(Y_k^{\infty}), \; A \in \sigma(Y_{-\infty}^0), \; Q(A) > 0 \right\} \\ \phi(k) \;\; = \;\; \sup\{ |Q(B|A) - Q(B)| \; : \;\; B \in \sigma(Y_k^{\infty}), \; A \in \sigma(Y_{-\infty}^0), \; Q(A) > 0 \} \end{aligned}$$

Therefore, $\log W_n \approx -\log Q(X_1^n)$

But how does $-\log Q(X_1^n)$ behave?

[LB] Under stationarity alone, a simple union bound yields $\Pr(\log[W_n Q(X_1^n)] < -2\log n | X_1^n = x_1^n) = \Pr\left(W_n < \frac{e^{-2\log n}}{Q(x_1^n)} | X_1^n = x_1^n\right)$ $\leq \sum_{j=1}^{\frac{1}{n^2 Q(x_1^n)}} \Pr\left(W_n = j | X_1^n = x_1^n\right) \leq \frac{1}{n^2 Q(x_1^n)} Q(x_1^n) = \frac{1}{n^2}$

and the lower bound follows by Borel-Cantelli.

[UB] For the upper bound in the general case, blocking a la Ibragimov.

In the special case where both $\boldsymbol{X}, \boldsymbol{Y}$ are IID,

the probability $\Pr(\log[W_nQ(X_1^n)] > 3\log n | X_1^n = x_1^n)$ is

$$\Pr\left(W_n > K := \frac{n^3}{Q(X_1^n)} \middle| X_1^n = x_1^n\right)$$

$$\leq \Pr\left(Y_1^n \neq x_1^n, \ Y_{n+1}^{2n} \neq x_1^n, \ \dots, \ Y_{K-n+1}^K \neq x_1^n\right)$$

$$\leq [1 - Q(x_1^n)]^{K/n} \leq \dots \leq 2/n^2$$

and the upper bound again follows from Borel-Cantelli.

Assume for the rest of part I that $X \stackrel{\mathcal{D}}{=} Y$

Simplest case when X, Y both IID $\sim P$ on A. Then:

$$-\log P(X_1^n) = \sum_{i=1}^n [-\log P(X_i)]$$

Simple IID partial sums with:

$$\Rightarrow \text{ mean } H = E[-\log P(X_1)] = \text{entropy of } X$$

$$\Rightarrow \text{ variance } \sigma^2 = \operatorname{Var}[-\log P(X_1)] = \text{minimal coding variance of } X$$

More generally...

LLN (Asymptotic Equipartition Property, or AEP, or Shannon-McMillan-Breiman Theorem 1948-57)

$$-\frac{1}{n}\log P(X_1^n) \to H$$
 a.s.

CLT (Yushkevich 53, Ibragimov 62)
$$\frac{-\log P(X_1^n) - nH}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, \sigma^2)$$

LIL (Philipp & Stout 75)
$$\limsup_{n \to \infty} \frac{-\log P(X_1^n) - nH}{\sqrt{2n \log \log n}} = \sigma \quad \text{a.s.}$$

"Functional" versions, etc.

Recall: the entropy rate of a stationary process X is: $H = \lim_{n \to \infty} \frac{1}{n} E[-\log P(X_1^n)]$

Theorem 1 says: $\log W_n \approx -\log P(X_1^n) + O(\log n)$ a.s. This together with the AEP imply:

Corollary 1 [Wyner-Ziv 89][Shields 93][Marton-Shields 95][K 98] If $\mathbf{X} \stackrel{\mathcal{D}}{=} \mathbf{Y}$ has either $\psi(k) \to 0$ or $\sum_k \phi(k) < \infty$, then: $\frac{\log W_n}{n} \to H$ a.s.

Idealized LZ compression algorithm [Wyner-Ziv 89]: Describe X_1^n as W_n message: $X_1 X_2 \cdots X_n$ database: $Y_1 Y_2 Y_3 \cdots Y_W Y_{W+1} \cdots Y_{W+n-1} \cdots$

Questions What is the *rate* of this algorithm? How well does it compress?

Corollary 1 says that the **rate** of this algorithm is:

$$\frac{\log W_n}{n} \to H \quad \text{``bits/symbol,'' a.s., as } n \to \infty$$

Recall that a compression algorithm is a "nice" collection of invertible maps $C_n: A^n \to \{0, 1\}^* = \bigcup_{k>1} \{0, 1\}^k$

with associated length functions

 $\ell_n(x_1^n) :=$ length of $C_n(x_1^n)$, bits

In view of the following, the LZ algorithm above is compression-optimal

Pointwise Source Coding Theorem [Barron 85][Kieffer 91]

For any stationary ergodic process X and any compression algorithm:

$$\liminf_{n \to \infty} \frac{\ell_n(X_1^n)}{n} \ge H \quad \text{ a.s.}$$

Recall: the minimal coding variance of a stationary process X is: $\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \text{Var}[-\log P(X_1^n)]$

Combining Theorem 1, $\log W_n \approx -\log P(X_1^n) + O(\log n)$, with the CLT/LIL refinements of the AEP yields:

Recall:
$$\gamma(k) = \max_{a \in A} E |\log P(X_0 = a | X_{-\infty}^0) - \log P(X_0 = a | X_{-k}^0)|$$

Question How good is this in terms of compression?

Finer Compression Performance

Corollary 2 says that, for large n, the **rate** of this LZ algorithm is:

$$rac{\log W_n}{n} pprox N\Big(H, rac{\sigma^2}{n}\Big)$$
 bits/symbol

In view of the following, this LZ algorithm is second-order compression-optimal

Second-order Source Coding Theorem [K 97]

If X has $\psi(k), \gamma(k) \to 0$ "fast enough," for any compression algorithm: **CLT** There exist RVs Z_n such that

$$\liminf_{n \to \infty} \frac{\ell_n(X_1^n) - nH}{\sqrt{n}} - Z_n \ge 0, \text{ a.s.}$$

and $Z_n \xrightarrow{\mathcal{D}} N(0, \sigma^2)$

LIL
$$\limsup_{n \to \infty} \frac{\ell_n(X_1^n) - nH}{\sqrt{2n \log \log n}} \ge \sigma \quad \text{a.s.}$$

Same idea yields even more precise asymptotics for the waiting times W_n :

Functional CLT

Functional LIL

or even

$$\limsup_{n \to \infty} \frac{\sum_{k=1}^{n} |\log W_k - kH|}{\sqrt{2n^3 \log \log n}} = 3^{-1/2} \sigma \quad \text{a.s.}$$

Recall template matching example:

template: $X_1 X_2 \cdots$ sequence: $Y_1 Y_2 Y_3 \cdots Y_m$

Define

 $L_m :=$ length of longest X_1^L appearing in Y_1^m

 $\underbrace{1011}_{001110}$

Duality: $L_m \geq n$ iff $W_n \leq m$

 \rightsquigarrow As in renewal theory, all results for W_n give corresponding results for L_m ...

Dual Results for L_m

With H and σ^2 as before:

Theorem 2 [K 98]

Under the corresponding assumptions in Corollaries 1, 2:

LLN

$$\frac{L_m}{\log m} \to \frac{1}{H} \quad \text{a.s.}$$

CLT

$$\frac{L_m - \frac{\log m}{H}}{\sqrt{\log m}} \xrightarrow{\mathcal{D}} N(0, \sigma^2 H^{-3})$$

LIL

$$\limsup_{n \to \infty} \frac{L_m - \frac{\log m}{H}}{\sqrt{2 \log m \log \log \log m}} = \sigma H^{-3/2} \quad \text{a.s.}$$

Approximate Pattern Matching & Lossy Data Compression

- \rightsquigarrow Waiting times
- \rightsquigarrow Strong approximation: $W_n(D) \approx \frac{1}{Q(B(X_1^n, D))}$
- \rightsquigarrow The generalized AEP
 - \rightsquigarrow First-order asymptotics of $W_n(D)$
- \rightsquigarrow Refinements of the generalized AEP
 - \rightsquigarrow Second-order asymptotics of $W_n(D)$
- → **Duality** and **match** lengths
 - \sim Asymptotics for match lengths
- \sim A short course on lossy data compression
 - \sim Optimality, waiting times, and lossy LZ compression \sim Practical LZ compression

The General Setting

Let $X = \{X_1, X_2, \ldots\}$, $Y = \{Y_1, Y_2, \ldots\}$ be stationary, ergodic processes with distributions P, Q and values in the *general alphabets* A, \hat{A} , resp.

Fix an arbitrary distortion measure $d: A \times \hat{A} \rightarrow [0, \infty)$, let

$$d(x_1^n, y_1^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, y_i), \quad x_1^n \in A^n, \ y_1^n \in \hat{A}^n$$

and write $B(x_{1}^{n},D) = \{y_{1}^{n} \in \hat{A}^{n} : d(x_{1}^{n},y_{1}^{n}) \leq D\}$

Define the waiting time $W_n(D) = \inf\{k \ge 1 : Y_k^{k+n-1} \in B(X_1^n, D)\}$

$$X_1 X_2 \cdots X_n$$

$$Y_1 Y_2 Y_3 \cdots Y_W Y_{W+1} \cdots Y_{W+n-1} \cdots$$

Problem: How does $W_n(D)$ behave as $n \to \infty$?

Intuition

Again we expect W_n to be close to the reciprocal of the probability that the pattern X_1^n appears in \mathbf{Y} , within distortion D, i.e., $W_n \approx \frac{1}{Q(B(X_1^n, D))}$

Theorem 3: Strong Approximation [Dembo-K 99][Chi 01]

If Y has either $\psi(k) \to 0$ or $\sum_k \phi(k) < \infty$ and $Q(B(X_1^n, D)) > 0$ ev. a.s., then:

 $\log\left[W_n(D)Q(B(X_1^n,D))
ight] \ = \ O(\log n)$ a.s.

Therefore, $\log W_n(D) \approx -\log Q(B(X_1^n, D))$

But how does $-\log Q(B(X_1^n, D))$ behave?

[LB] Under stationarity alone, same argument as before [UB] For the upper bound in the general case, use the "second moment method" + a blocking *a la* lbragimov. In the special case where \mathbf{X}, \mathbf{Y} are IID, fix a "good" realization x_1^{∞} , and let

$$S_n = \sum_{j=1}^{n^2/Q(B(x_1^n, D))} \mathbb{I}\{Y_{jn+1}^{(j+1)n} \in B(x_1^n, D)\}$$

so that

 $\Pr(\log[W_n(D)Q(B(X_1^n, D))] > 3\log n | X_1^n = x_1^n) \le \Pr(S_n = 0) \le \frac{\operatorname{Var}(S_n)}{(E[S_n])^2}.$ By stationarity,

$$E[S_n] = \frac{n^2}{Q(B(x_1^n, D))}Q(B(x_1^n, D)) = n^2$$

and by independence, $Var(S_n) = n^2$ too; therefore, as before,

 $\Pr(\log[W_n(D)Q(B(X_1^n, D))] > 3\log n | X_1^n = x_1^n) \le 1/n^2$

and the upper bound again follows from Borel-Cantelli

Recall that $\log W_n(D) \approx -\log Q(B(X_1^n, D))$ but how does $-\log Q(B(X_1^n, D))$ behave?

Expand

$$Q(B(x_1^n, D)) = \Pr \{ d(X_1^n, Y_1^n) \le D \mid X_1^n = x_1^n \}$$

= $\Pr \left\{ \frac{1}{n} \sum_{i=1}^n d(x_i, Y_i) \le D \right\}$

Intuition

Given $X_1^n = x_1^n$, the prob $Q(B(X_1^n, D))$ is a *large deviations probability* for the non-stationary process $\{(x_i, Y_i)\}$ (when D is small enough)

Assume

From now on that $d(\cdot, \cdot)$ is bounded and that $D_{\min} := E[\operatorname{ess\,inf}_{Y_1} d(X_1, Y_1)] < D < D_{\operatorname{av}} := E[d(X_1, Y_1)]$

Write

 P_n, Q_n for the *n*th order marginals of X, Y, resp. $H(\mu \| \nu) := \int \log(\frac{d\mu}{d\nu}) d\mu$ for the relative entropy

Theorem 4: Generalized AEP [Dembo-K 99][Chi 01]

If
$$Y$$
 has $\psi(k) o 0$, then: $- \frac{1}{n} \log \, Q(B(X_1^n,D)) o R(P,Q,D)$ a.s.

where $R(P, Q, D) = \lim_{n \to \infty} \frac{1}{n} R_n(P_n, Q_n, D)$ and $R_n(P_n, Q_n, D)$ is the "large deviations exponent"

$$R_n(P_n, Q_n, D) = \inf \int H(\nu_n(\cdot | x_1^n) || Q_n(\cdot)) dP_n(x_1^n)$$

where the infimum is over all measures ν_n on $A^n \times \hat{A}^n$ s.t. the A^n -marginal of ν is P_n , and $\int d(x_1^n, y_1^n) d\nu_n(x_1^n, y_1^n) \leq D$

Recall:
$$Q(B(X_1^n, D)) = \Pr\left\{\frac{1}{n}\sum_{i=1}^n d(X_i, Y_i) \le D \mid X_1^n\right\}$$

Step 1: Upper bound. Easy, a la Chernov bound

Step 2: Lower bound. Parameter dependent change of measure + blocking argument for the LLN of the twisted measure

Step 3: Identification of the rate function. Convex duality + blocking argument for regularity and convexity of $\Lambda^* = R$

 \square

Thm 3 $\Rightarrow \log W_n(D) \approx -\log Q(B(X_1^n, D))$ Thm 4 $\Rightarrow -\log Q(B(X_1^n, D)) \approx nR(P, Q, D)$ Combining, yields:

Corollary 3 [Luczak-Szpankowski 97][Yang-Kieffer 98][Dembo-K 99][Chi 01] If \mathbf{Y} has $\psi(k) \rightarrow 0$ then:

$$\frac{\log W_n(D)}{n} \to R(P,Q,D) \quad \text{a.s.}$$

Questions

Does this have any implications for compression? [Later]

Finer asymptotics? Where to start...?

Finer Large Deviations for $Q(B(X_1^n, D))$

Assume

From now on that Y is IID, $Q_n = Q^n$ for some distr Q on \hat{A}

Write

 $\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ for the empirical measure induced by X_1^n on A $R(\hat{P}_n) = R_1(\hat{P}_n, Q, D)$ and $R(P) = R_1(P_1, Q, D)$

Theorem 5: Large Deviations [Dembo-K 99][Yang-Zhang 99] If Y is IID:

$$-\log Q(B(X_1^n, D)) - nR(\hat{P}_n) = \frac{1}{2}\log n + O(1)$$
 a.s.

Proof: Upper bound: Easy argument *a la* Chernov bound.Lower bound: parameter dependent change of measure + CLT*a la* Bahadur-Rao, with Berry-Esséen bound

So far we've shown

$$\log W_n(D) \approx -\log Q(B(X_1^n, D)) \approx nR(\hat{P}_n)$$

probability \rightsquigarrow analysis!

Theorem 6: Uniform Approximation [Dembo-K 99, 03]

If X has $\phi(k) \to 0$ fast enough and Y is IID, then, for an explicitly identified, zero-mean $f : A \to \mathbb{R}$:

$$nR(\hat{P}_n) = nR(P) + \sum_{i=1}^n f(X_i) + O(\log \log n)$$
 a.s.

Combining Theorems 3, 5 and 6:

 $\log W_n(D) \approx -\log Q(B(X_1^n, D)) \approx nR(\hat{P}_n) \approx nR(P) + \sum_{i=1}^n f(X_i)$ i.e. $\log W_n(D) - nR(P) \approx \sum_{i=1}^n f(X_i)$

Proof Outline

Letting $\Lambda(x;\lambda) = \log E\left[e^{\lambda d(Y_1,x)}\right], \quad x \in A, \ \lambda \in \mathbb{R}$

we note that ${\cal R}({\cal P})$ can be expressed

$$R(P) = \sup_{\lambda \le 0} \left[\lambda D - E[\Lambda(X_1; \lambda)] \right] = \lambda^* D - E[\Lambda(X_1; \lambda^*)]$$

where $\lambda^* < 0$ is s.t.

$$\frac{d}{d\lambda} E[\Lambda(X_1;\lambda)] \bigg|_{\lambda=\lambda^*} = D$$

For *n* large enough, the difference $n[R(P) - R(\hat{P}_n)]$ can be expressed as a supremum over a small neighborhood around λ^* , in terms of $E_{\hat{P}_n}[\Lambda(X;\lambda)]$ alone, which is itself an IID partial sum.

The uniform LLN then yields the result, upon defining:

$$f(\cdot) = -\left(\Lambda(\cdot;\lambda^*) - E[\Lambda(X_1;\lambda^*)]\right)$$

NOTE: f depends on all of P, Q, D

Second-Order Asymptotics for $W_n(D)$

Recall

 $\rightsquigarrow R(P)$ can be expressed as $\lambda^* D - E[\Lambda(X_1;\lambda^*)]$

 \rightsquigarrow Theorems 3,5,6 $\Rightarrow \log W_n(D) - nR(P) \approx \sum_{i=1}^n f(X_i)$

Define the D, Q-coding variance of X as: $\sigma^2 = \sigma_{P,Q,D}^2 = \operatorname{Var}(\Lambda(X_1, \lambda^*)) = \operatorname{Var}(f(X_1))$

Combining the above approx with the CLT/LIL:

Corollary 4 [Dembo-K 99, 03]

If \boldsymbol{X} has $\phi(k) \rightarrow 0$ fast enough and \boldsymbol{Y} is IID, then:

$$\begin{array}{ll} \textbf{CLT} & \displaystyle \frac{\log W_n(D) - nR(P)}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,\sigma^2) \\ \textbf{LIL} & \displaystyle \limsup_{n \to \infty} \displaystyle \frac{\log W_n(D) - nR(P)}{\sqrt{2n \log \log n}} = \sigma \quad \textbf{a.s.} \end{array}$$

Template matching example:

template:	$X_1 X_2 \cdots$
sequence:	$Y_1 \ Y_2 \ Y_3 \ \cdots \ Y_m$

Define

$$L_m(D) := \text{ length of longest } X_1^L \text{ appearing in } Y_1^m \text{ with distortion } \leq D$$

= max{ $L \geq 1$: $Y_j^{j+L-1} \in B(X_1^L, D)$ for some $1 \leq j \leq m - L + 1$ }
E.g. $D =$ "agree in $\geq 70\%$ of all positions", $m = 15$, $L_m(D) = 4$
 $\underbrace{10110}_{001110011001001}$

Duality?

Here: $L_m(D) \ge n \iff W_n(D) \le m$ but NOT conversely!

Modified duality: $L_m(D) \geq n$ iff $\inf_{k\geq n} W_k(D) \leq m$

Again, all results for $W_n(D)$ give corresponding results for $L_m(D)$ but we have to work for them!

Theorem 7 [Dembo-K 99, 03]

If Y is IID, then with $R(P) = R_1(P_1, Q, D)$ and $\sigma^2 = \sigma_{P,Q,D}^2$ as before: LLN $\frac{L_m(D)}{\log m} \rightarrow \frac{1}{R(P)}$ a.s.

If, in addition \boldsymbol{X} has $\phi(k) \to 0$ fast enough :

CLT
$$\frac{L_m(D) - \frac{\log m}{R(P)}}{\sqrt{\log m}} \xrightarrow{\mathcal{D}} N(0, \sigma^2 R(P)^{-3})$$
LIL
$$\limsup_{n \to \infty} \frac{L_m(D) - \frac{\log m}{R(P)}}{\sqrt{2 \log m \log \log \log m}} = \sigma R(P)^{-3/2} \quad \text{a.s.}$$

Approximate Pattern Matching & Lossy Data Compression

- \rightsquigarrow Waiting times
- \rightsquigarrow Strong approximation: $W_n(D) \approx \frac{1}{Q(B(X_1^n, D))}$
- \rightsquigarrow The generalized AEP
 - \rightsquigarrow First-order asymptotics of $W_n(D)$
- \rightsquigarrow Refinements of the generalized AEP
 - \rightsquigarrow Second-order asymptotics of $W_n(D)$
- \rightsquigarrow Duality and match lengths
 - \sim Asymptotics for match lengths
- \rightsquigarrow A short course on lossy data compression
 - \rightsquigarrow Optimality, waiting times, and lossy LZ compression \rightsquigarrow Practical LZ compression

Data:	$X_1^n = X_1, X_2, \dots, X_n \text{ IID} \sim P_n = P^n \text{ on } A^n$
Quantizer:	$\mathcal{K}_n: A^n \to \text{ codebook } B_n \subset \hat{A}^n$
Encoder:	$\mathcal{E}_n: B_n \to \{0,1\}^*$ "uniquely decodable"
Length function:	$\ell_n(X_1^n) = \text{length of } \mathcal{E}_n(\mathcal{K}_n(X_1^n)) \text{bits}$

 $\xrightarrow{\mathcal{E}_n} \underset{101101000 \ldots}{0010111010100}$

Distortion requirement

With a distortion measure $d(x_1^n, y_1^n)$ as before the code $(\mathcal{K}_n, \mathcal{E}_n, \ell_n)$ operates at distortion level D > 0if $d(x_1^n, \mathcal{K}_n(x_1^n)) \leq D$ for all x_1^n

Question

For a code $(\mathcal{K}_n, \mathcal{E}_n, \ell_n)$ operating at distortion level Don data generated by the IID "source" $\mathbf{X} = \{X_1, X_2, \ldots\}$ what is the best (=smallest) achievable compression rate,

compression rate :=
$$\lim_{n \to \infty} \frac{\ell_n(X_1)}{n}$$
 bits/symbol ?

Recall

For any prob distr Q on \hat{A} : $R_1(P, Q, D) = \inf \int H(\nu(\cdot|x) || Q(\cdot)) dP(x)$ where the infimum is over all measures ν on $A \times \hat{A}$ s.t. the A-marginal of ν is P and $\int d(x, y) d\nu(x, y) \leq D$

Answer The optimal compression rate is given by the rate-distortion function of X: $R(D) := R_1(P, Q^*, D) = \inf_Q R_1(P, Q, D)$

Fundamental Limits of Lossy Compression

Fix

IID random source X with distr P on the source alphabet AOptimal distr Q^* on the reproduction alphabet \hat{A} Single-letter distortion measure $d(x_1^n, y_1^n)$ as before Distortion values D in the interesting range $D_{\min} < D < D_{av}$

Pointwise Source Coding Theorem [Kieffer 91][K 00]

For any code
$$(\mathcal{K}_n, \mathcal{E}_n, \ell_n)$$
 operating at distortion level D :
$$\liminf_{n \to \infty} \frac{\ell_n(X_1^n)}{n} \ge R(D) \quad \text{bits/symbol, a.s.}$$

 \sim Can we/How can we achieve this lower bound?!

Idealized Lossy LZ Compression

Describe X_1^n as $W_n(D)$, as before:

message: $X_1 X_2 \cdots X_n$ database: $Y_1 Y_2 Y_3 \cdots Y_W \cdots Y_{W+n-1} \cdots$ IID ~ Q

In view of Corollary 3, the rate of this algorithm is:

compression rate $\approx \frac{\log W_n(D)}{n} \rightarrow R_1(P,Q,D)$ bits/symbol, a.s.

In particular, if we take $Q = Q^*$ as in the definition of the rate-distortion function, the compression rate is *optimal*:

compression rate
$$pprox rac{W_n(D)}{n}
ightarrow R(D)$$
 bits/symbol, a.s.

 \rightsquigarrow How about finer optimality properties? [\rightsquigarrow What if we don't know Q^* ?]

Idealized lossy LZ algorithm with $Q = Q^*$

Given X, Y with distr P, Q^* , resp., and D > 0, Theorems 3,5 and 6 \Rightarrow there exists a zero-mean, bounded $f : A \to \mathbb{R}$ s.t.

$$\begin{aligned} \mathsf{LZ}_n(X_1^n) \ &= \ \log W_n(D) \ + \ O(\log n) \\ &= \ nR(D) \ + \ \sum_{i=1}^n f(X_i) \ + \ O(\log n) \end{aligned} \qquad \text{bits, a.s.}$$

Idealized lossy LZ algorithm with $Q = Q^*$

Given X, Y with distr P, Q^* , resp., and D > 0, Theorems 3,5 and 6 \Rightarrow there exists a zero-mean, bounded $f : A \to \mathbb{R}$ s.t.

$$\begin{aligned} \mathsf{LZ}_n(X_1^n) &= \log W_n(D) + O(\log n) \\ &= nR(D) + \sum_{i=1}^n f(X_i) + O(\log n) \quad \text{bits, a.s.} \end{aligned}$$

 \sim In view of the following, this is optimal up to a very fine scale!

Second-order Source Coding Theorem [K 00] For ANY seq of codes $(\mathcal{K}_n, \mathcal{E}_n, \ell_n)$ operating at distortion level D

$$\ell_n(X_1^n) \ge nR(D) + \sum_{i=1} f(X_i) - 2\log n$$
 bits, ev. a.s.

Properties of Lossless LZ Schemes

Lossless Lempel-Ziv schemes are *extremely successful* in practice. Why?

A. Compression Optimality/Universality

Can be deduced from studying the "idealized" scheme

B. Convergence speed: Bad!

$$O\left(\frac{\log\log m}{\log m}\right)$$

C. Complexity/Implementation: Superb

- efficient string matching algorithms
- the algorithm is *tunable*

Let $\boldsymbol{X} \sim P$ be stationary ergodic

The classical **AEP**

If A is finite: 1

$$-\frac{1}{n}\log P_n(X_1^n) \to H(P) \quad \text{a.s.}$$

Barron's extension

If
$$Q_n = Q^n$$
 is IID on A :

$$-\frac{1}{n} \log \frac{dP_n}{dQ^n}(X_1^n) \to -H(P||Q) \quad \text{a.s.}$$

Theorem 4

If
$$Q_n = Q^n$$
 is IID on \hat{A} and $d(\cdot, \cdot)$ is bounded:

$$-\frac{1}{n} \log Q^n(B(X_1^n, D)) \rightarrow R(P, Q, D) \quad \text{a.s.}$$

Let $X \sim P$ be IID, Q be an IID measure on \hat{A} with $P \ll Q$ and $d(\cdot, \cdot)$ be bounded. With "probability one":

$$-H(P||Q) \leftarrow -\frac{1}{n} \log \frac{dP^n}{dQ^n} (X_1^n)$$

$$\leftarrow -\frac{1}{n} \log \frac{P^n(B(X_1^n, D))}{Q^n(B(X_1^n, D))}$$

$$= -\frac{1}{n} \log P^n(B(X_1^n, D)) + \frac{1}{n} \log Q^n(B(X_1^n, D))$$

$$\rightarrow R(P, P, D) - R(P, Q, D)$$

$$\rightarrow -H(P||Q)$$

Applications

- → Lossy Minimun Description Length (MDL) compression
- \rightsquigarrow Entropy estimation
- \rightsquigarrow Realistic lossy data compression

Theory

- \rightsquigarrow Sphere covering and measure concentration converses
- \rightsquigarrow Error exponents
- \rightsquigarrow Uniform generalized AEP and refinements
- \rightsquigarrow Random fields
- \rightsquigarrow Small balls and the Brin-Katok theorem