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The problem

We deal with N-dimensional nonstationary time series (asset returns) Y t , t = 1, · · · , T ,

when the focus is shifted to modelling and predicting the covariances {Σt ; t = 1, · · · , T} of

the individual vectors

The number of parameters in Σt is N(N + 1)/2 which grows quadratically in N.

It is common to decompose Y t = (y1t , y2t , · · · , yNt ) the returns of N assets at time t as

Y t = µt + εt , (1)

where µt = E(Y t |Ft−1) is the conditional mean (predictor) of Y t given the past information

Ft−1, and εt is the shock (innovation) at time t with the conditional covariance matrix

Σt = cov(εt |Ft−1).

Assume Y t ≡ εt , and focus on modeling the conditional covariance matrices Σt ,

t = 1, · · · , T .
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Dynamic eigenvalue and eigenvector modelling

We decompose Σt = PtΛtPT
t and model Λt and Pt

with an AR(1) process. Direct modelling of Pt is hard.

Since Pt is a rotation matrix, it can be parameterised

w.r.t. N(N − 1)/2 Givens angles, each one belonging

to matrix Gjt:
Pt =

N(N−1)
2

∏

j=1

Gjt
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2-Dim

Σt =









cos(ωt ) sin(ωt)

− sin(ωt ) cos(ωt )

















λ1t 0

0 λ2t

















cos(ωt) sin(ωt)

− sin(ωt ) cos(ωt )









T

Uniqueness
λ1t > λ2t , −π

2 < ωt < π

2
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3-Dim

Ignoring t

Σ = PΛPT = GΛGT = G12G13G23ΛGT
23GT

13GT
12,

where G =















cos(ω12) sin(ω12) 0

− sin(ω12) cos(ω12) 0

0 0 1





























cos(ω13) 0 sin(ω13)

0 1 0

− sin(ω13) 0 cos(ω13)





























1 0 0

0 cos(ω23) sin(ω23)

0 − sin(ω23) cos(ω23)
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N-Dim

Pt =
N

∏

k=1,l>k

G(kl)t =
N

∏

k=1,l>k





























Ik−1 0 0 0 0

0 cos(ωkl,t ) 0 sin(ωkl,t ) 0

0 0 Il−k−1 0 0

0 − sin(ωkl,t) 0 cos(ωkl,t ) 0

0 0 0 0 IN−l





























Note

Every matrix contains only 4 elements with angles, ones in the diagonal, and everywhere else

zeroes
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The Model

Y = {Y1, . . . , YT}, Yt = (y1t , . . . , yNt )
T , Yt ∼ MVN

{

0, GtΛtGT
t

}

.

Transformations: hit = log λit , δit = log(
π/2+ωit
π/2−ωit

), i = 1, . . . , N, t = 1, . . . , T

hi,t+1 = µh
i + φh

i · (hit − µh
i ) + σh

i · ηh
it , i = 1, . . . , N

δj,t+1 = µδ
j + φδ

j · (δjt − µδ
j ) + σδ

j · ηδ
jt , j = 1, . . . ,

N(N − 1)

2

where ηh
it , ηδ

jt ∼ N
{

0, 1
}

independently, and we denote

θh = (φh
1, . . . , φh

N , σh
1 , . . . , σh

N )

θδ = (φδ
1 , . . . , φδ

N(N−1)
2

, σδ
1η , . . . , σδ

N(N−1)
2 η

)
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Estimation and model choice

Based on Laplace approximations for large N, based on MCMC

for small N.

Inference is Bayesian, but can be also viewed as classical

Exploit some interesting conditional independence structure of

our parameterisation

Achieve parsimony through Bayes Factors
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Conditional independence [1]

Suppress t

π(h|δ, Y ) ∝ π(h1|δ12, δ13, . . . , δ1N , Y ) ×

π(h2|δ12, δ13, . . . , δ1N , δ23, δ24, . . . , δ2N , Y ) ×

× · · · × π(hN−1|δ, Y ) × π(hN |δ, Y )
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Conditional independence [1] cont.

For example, the log-likelihood for N = 3 will be

L = c −
1

2

T
∑

t=1

(

log
∣

∣

∣
PtΛt P

T
t

∣

∣

∣
+ Y T

t

(

G12,t G13,t G23,tΛt G
T
23,t G

T
13,t G

T
12,t

)

−1
Y t

)

= c −
1

2

T
∑

t=1

[

log |Λt | + (G23,t Y
∗

t )T
Λ
−1
t (G23,t Y

∗

t )
]

where Y∗

t = GT
13,t G

T
12,t Y , and since

G23,t =















1 0 0

0 cos(ω23,t ) sin(ω23,t )

0 − sin(ω23,t ) cos(ω23,t )















λ1t appears only as a
∑

t Y∗2
1t λ1t term in L so it is independent of G23.
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Conditional independence [2]

Supress t

π(δ12|Y ) ∝ π(δ12|Y1, Y2)

π(δ13|Y ) ∝ π(δ13|Y1, Y2, Y3, δ12)

= π(δ13|Y ∗

1 , Y ∗

2 , Y3, δ12), Y ∗ = GT
12Y

π(δ14|Y ) ∝ π(δ14|Y ∗

1 , Y ∗

2 , Y ∗

3 , δ12δ13)

...

Very convenient for MCMC implementation

Suggests to estimate Givens angles sequentially.
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Information Matrix

Orthogonality

I(h, δ) is block diagonal so h and δ are orthogonal, see Yang and Berger 1994, Annals of

Statistics.

The block I(h) is diagonal as well, see Yang and Berger 1994, Annals of Statistics.

The block I(δ) is diagonal in the case when δ =0, see Daniels and Kass 2001, Biometrics.

The expected information matrix of I(δ) becomes diagonal, if we have transformed the data at first

according to the sample eigenvector matrix, thus making E(δ) = 0. Therefore, we can perform

separate maximizations for all the parameters in the spirit of Cox and Reid 1987, JRSSB and suffer

small loss in the accuracy of our results.
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Conditional independence [2] cont.

Supress t

π(δ12|Y ) ∝ π(δ12|Y1, Y2)

π(δ13|Y ) ∝ π(δ13|Y1, Y3)

..

.

π(δ N(N−1)
2

|Y ) ∝ π(δ N(N−1)
2

|YN−1, YN)

Independence

This suggests to estimate Givens angles independently.
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Estimation algorithm

Perform a spectral decomposition Σ = PΛPT based on sample estimates and work with the

standardised vector Y∗ = Λ
−1/2PT Y . Note that although P and Λ are substantially

suboptimal estimators, the order of eigenvalues is retained in Y∗.

Estimate separately (by running a 2-dim SV model) the marginal density of angles

δ12, . . . , δ1N and the corresponding 2 × (N − 1) θδ parameters (we exploit the first

conditional independence property)

Estimate the marginal densities of h1 and θh1
by running an 1-d SV model (here we exploit

the orthogonality of h1 with δ12, . . . , δ1N and the the second conditional independence

property).

Proceed to the rest of rows as above
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Laplace approximation for 1-D SV model

(based on Rue, Martino, Chopin, JRSSB, discussion on 15/10/08 in London)

yt |ht ∼ N {0, exp(ηt )}

ηt = µ + ht

ht |h1, . . . , ht−1, σ, φ ∼ N(φht−1, σ2), t = 1, . . . , T

Call θ = (log 1+φ
1−φ , log(σ2)), h = (µ, h1, . . . , hT )

π(h, θ|y) ∝ π(θ)π(h|θ)
∏

i

π(yi |hi , θ)

∝ π(θ)|Q(θ)|T/2 exp

[

−
1

2
hT Q(θ)h +

∑

i

log{π(yi |hi , θ)}

]

We exploit the fact that Q(θ), the precision matrix of π(h | θ), is very sparse.
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Laplace approximation for 1-D SV model

Approximate with Laplace approximations first

π(θ|y) ∝
π(h, θ, y)

π̃(h | θ, y)

∣

∣

∣

h=h∗
(θ)

where π̃(h | θ, y) is the Gaussian approximation to π(h | θ, y), and then

π̃(h|y) =

∫

π̃(h | θ, y)π̃(θ | y)dθ

by (simple) numerical integration. Normality of the marginal densities is not necessarily assumed in

either approximations

Rue Martino and Chopin (2008) run this algorithm in 11 seconds assuming t-errors -beats MCMC!



The Model Conditional independence Laplace Bayes Factors Applications Current work

Laplace approximation for 2-D SV model

The latent variables are h = (h1, h2, δ) and

θ = (φh1 , σ
2
h1

, φh2 , σ
2
h2

, φδ, σ
2
δ).

The maximisations required w.r.t. h are achieved by exploiting

the orthogonality of h1, h2, δ.

When we estimate the marginal density of θδ12 we use only rows

Y 1 and Y 2. The h1 and h2 that are integrated out are not the

same as those that we obtain from the full Y dataset, these will

be obtained later when all angles in row 1 are obtained.
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Model determination [1]

Important to achieve parsimony, especially in O(N2) angles

Bayes factor, DIC, predictive measures are available

An approximation of marginal likelihood is immediately available

as the normalising constant of π(θ|Y ) under the assumption of

Normality

A better approximation is achieved by numerical integration of

π(θ|Y ).
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Model determination [2]

For every latent angle vector δij , we also estimate another,

simpler model, in which the δij is not an AR(1) process but has a

Normal prior with zero mean and a unit information variance.

In this case θ = (φh1 , σ
2
h1

, φh2 , σ
2
h2

, δ).

Bayes factors are used according to Kass and Raftery (1985)

critical values.
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Applications

We fitted our model to two datasets.

The first consists of 945 simulated daily returns of 4 assets.

The second consists of 348 daily returns of 14 stocks of FTSE

100 until June 12th 2009.

First model has 4 × 3/2 = 6 angles while the second

14 × 13/2 = 91. Bayes factors gave correct evidence to support

models with all 6 AR(1) angles for the simulated data and 9

(10%) AR(1) angles for the real data.
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Correlations of the 4-simulated returns
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Correlations of the 4-simulated returns continued

Correlation 1,2
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Correlations of the 4-simulated returns continued
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Volatilities of the 4-simulated returns

First Assets volatility Estimate
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Correlations of the 14-stock data

Correlation 1,2
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Correlations of the 14-stock data continued
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Volatilities of the 14-stock data

First Assets volatility Estimate
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Volatilities of the 14-stock data
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0 100 200 300

0
5

10
15

20
Sixth Assets volatility Estimate

0 100 200 300

0
20

40
60

Seventh Assets volatility Estimate

0 100 200 300

0
10

20
30

40

Eigth Assets volatility Estimate

0 100 200 300

0
10

20
30

40
50



The Model Conditional independence Laplace Bayes Factors Applications Current work

Volatilities of the 14-stock data
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Current work

Assessing the approximation error by comparing with MCMC

output

Investigate the most appropriate form of Laplace-type

approximations

Prediction theory
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