Gergely Neu

REINFORCEMENT LEARNING | univ. Pompeu Fabra

A PRIMAL-DUAL VIEW OF Gergely Neu

REINFORCEMENT LEARNING | univ. Pompeu Fabra

G€RGELY N<U
LINIV, POMP<L FABRA

WHAT IS REINFORCEMENT LEARNING?

In state s, .
Agent take action a Environment

Reward r,
new state s’

* maximize reward
Learning to ¢ in a reactive environment
 under partial feedback

N
RL EXAMPLE 0.

N
RL EXAMPLE 0.

N
RL EXAMPLE 0.

N
RL EXAMPLE 0.

N
RL EXAMPLE 0.

_" next state

-
<PARTA

actions

e

RL EXAMPLE 0.

D /
L6 2‘03

S . ‘ / rewa}d

> o -

next state 3 —
SPARTA

oy actions

RL EXAMPLE 0.

"MNAE

™)

-‘ x“ S?.RR‘F‘\
N AN |

(IR, actions

Ll A

partial observability

RL EXAMPLE 0.

reward? reward?
reward?

&)

reward?
’7\ POKENAL
o
. next State"' reward?
SPARTA ~
LN
) state actions reward?

VW ®

partial observability

WHY SHOULD | CARE?

Reinforcement

LEARNIN

WHY SHOULD | CARE?

Reinforcement

LEARNIN

WHY SHOULD I CARE?

Video Pinball]
Boxing |
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber |
Gopher |

Namzﬁﬁggtiiz E

Breakthrough in
Atari game playing fangaro
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |

WHY SHOULD I CARE?

State: pixels on screen

Actions: joystick

State transitions: game dynamics
Reward: score in game

Assault |
Road Runner |
Kangaroo T
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |

| WHY SHOULD I CARE?

Breakthrough in Go iﬁ

r AlphaGo \ee Sedo\

>= KA

e\
b

g

| WHY SHOULD I CARE?

H
Breakthrough in Go i 1B
" | WP

State: stones currently on board

Actions: place stone on board

State transitions: own move + adversary’s move
Reward: +1 for winning the game

SN OV

w
e

WHY SHOULD I CARE?

WHY SHOULD I CARE?

Actions: turn left/right, accelerate/brake,...
State transitions: depending on
state+action+randomness

Reward: +100 for reaching destination, -100 for
accidents,...

T / 3 e A L —".
Y A

RECOMMENDED READING

*Richard Sutton and Andrew Barto
(2018): “Reinforcement Learning:
An Introduction”

% MORGAN &CLAYPOOL PUBLISHERS

. ovable (but not Algorithms for

* For an enjoyable (but not very :

rigorous) introduction Remf(.)rcement
Learning

Dimitri Bertsekas (2012):
“Dynamic Programming and
Optimal Contro l” Csaba Szepesviri

* For a rigorous treatment of the basics

Csaba Szepesvari (2012):
“Algorithms for RL”

* For a rigorous description of basic RL
. SYNTHESIS LECTURES ON ARTIFICIAL
d lg ont h ms INTELLIGENCE AND MACHINE LEARNING

Ronald J. Brachman and Thomas G. Dietterich, Series Editors

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration
*Value-function-based methods

» Temporal differences, Q-learning, LSTD, deep Q networks,...

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration
*Value-function-based methods

» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1

*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

| MARKOV DECISION PROCESSES (MDPs)

Learner Action a;

Environment
(”Agent")

State x;

A Markov Decision Process (MDP) is characterized by
» X:aset of states
» A:asetof actions, possibly different in each state
e P: XX AXX - [0,1]:atransition function with P(- |x, a) being the
distribution of the next state given previous state x and action a:
Plx;yq = x'|x; = x,a; = a] = P(x'|x,a)
« X XA-[0,1]:areward function

| MARKOV DECISION PROCESSES (MDPs)

Learner Action a;

Environment
(”Agent")

State x;

A Markov Decision Process (MDP) is characterized by (X, 4, P, 1)
» X:aset of states

» A:asetof actions, possibly different in each state
e P: XX AXX - [0,1]:atransition function with P(- |x, a) being the
distribution of the next state given previous state x and action a:
Plx;yq = x'|x; = x,a; = a] = P(x'|x,a)
« X XA-[0,1]:areward function

MARKOV DECISION PROCESSES (MDPs)

Learner Action a;

Environment
(”Agent")

State x;

A Markov Decision Process (MDP) is characterized by (X, 4, P, 1)
Interaction in an MDP:in eachround t = 1,2, ...

» Agent observes state x; and selects action a;

e Environment moves to state x;,; ~ P(: |x; a;)

» Agent receives reward r; such that E[r¢|x;, a;] = r(x;, a;)

| MARKOV DECISION PROCESSES (MDPs)

Learner Action a;

Environment
(”Agent")

State x;

A Markov Decision Process (MDP) is characterized by (X, 4, P, 1)
Interaction in an MDP:in eachround t = 1,2, ...

» Agent observes state x; and selects action a;

e Environment moves to state x;,; ~ P(: |x; a;)

» Agent receives reward r; such that E[r¢|x;, a;] = r(x;, a;)

GOAL:

maximize “total rewards”!

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
There is a terminal state x

* GOAL: maximize total reward until final round T
when x* is reached:

R* = E[XI_,7]

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
There is a terminal state x

* GOAL: maximize total reward until final round T
when x* is reached:

R* = E[YXI_,7¢]

Discounted MDPs:
* No terminal state

* Discount factor y € (0,1)
* GOAL: maximize total discounted reward

Ry — E[Z?):O ytrt]

NOTIONS OF “TOTAL REWARD”

+ other notions:
* long-term average reward

EpiSOdiC MDPs: * total reward up to fixed horizon
There is a terminal state x __

* GOAL: maximize total reward until final round T
when x* is reached:

R* = E[XI_,7]

Discounted MDPs:
* No terminal state

* Discount factor y € (0,1)
* GOAL: maximize total discounted reward

Ry — E[Z?O:O ytrt]

NOTIONS OF “TOTAL REWARD”

+ other notions:
* long-term average reward (part 2?)

EpiSOdiC MDPs: * total reward up to fixed horizon
There is a terminal state x __

* GOAL: maximize total reward until final round T
when x* is reached:

R* = E[YXI_,7¢]

Discounted MDPs:
* No terminal state

* Discount factor y € (0,1)
* GOAL: maximize total discounted reward

Ry — E[Z?:O ytrt]

+ we will assume that
X and A are finite

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions

TT. X1,A1,X9,A9, ..., Xt P> Q¢

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
TT. X1,A1,X9,A9, ..., Xt P> Q¢

Stationary policy: mapping from states to actions
(no dependence on history or t)
X - a

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
TT. X1,A1,X9,A9, ..., Xt P> Q¢

Stationary policy: mapping from states to actions
(no dependence on history or t)
X - a

Let T = (x4, a4, x5, a,, ...) be a trajectory generated by
running r in the MDP 7 ~ (1, P):

* ap = (Xg, A1, Xp_ 1, e X1)

* Xep1 ~ PC |xg aq)

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
TT. X1,A1,X9,A9, ..., Xt P> Q¢

Stationary policy: mapping from states to actions
(no dependence on history or t)
X - a

Let T = (x4, a4, x5, 0a,,...) be atrajectory generated by
running r in the MDP 7 ~ (1, P):
* ap = (Xg, A1, Xp_ 1, e X1)

* Xep1 ~ PC |xg aq)
Expectation under this distribution: E ;||

DEFINING OPTIMALITY

Optimal policy z*: a policy that maximizes

E.|R,| =E, [Z ytrt]

DEFINING OPTIMALITY

Optimal policy z*: a policy that maximizes

E.|R,| =E, [Z ytrt]

Theorem
There exists a deterministic optimal policy 7" such that

m*(xq,aq, ..., Xg) = W (X;)

DEFINING OPTIMALITY

Optimal policy z*: a policy that maximizes

E.|R,| =E, [Z ytrt]

Theorem
There exists a deterministic optimal policy 7* such that

m*(xq,aq, ..., Xg) = W (X;)

Consequence: it's enough to study stationary policies
TX P a

DEFINING OPTIMALITY

Theorem

There exists a deterministic optimal policy 7* such that
" (Xq,Qq, .., Xg) = 7 (X;)

Consequence: it's enough to study stationary policies
X~ a

Intuitive “proof”: Future transitions x;,,; ~ P(: |x;, a;) do
not depend on the previous states x4, x,, ...

DEFINING OPTIMALITY

Theorem

There exists a deterministic optimal policy 7* such that
" (Xq,Qq, .., Xg) = 7 (X;)

Consequence: it's enough to study stationary policies
X~ a

Intuitive “proof”: Future transitions x;,,; ~ P(: |x;, a;) do
not depend on the previous states x4, x,, ...

="“Markov property”

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1

Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

VALUE FUNCTIONS

Value function: evaluates policy 7 starting from state x:

V7 (x) = Ex[¥XeZoy're %0 = x]

VALUE FUNCTIONS

Value function: evaluates policy 7 starting from state x:
VT(x) = Ex[XiZoy Tt Ix0 = x]

Action-value function: evaluates policy 7 starting from
state x and action a:

Q" (x,a) = En[z;?o:O Vtrt |Xo = X,0p = al

VALUE FUNCTIONS

Value function: evaluates policy 7 starting from state x:
VT(x) = Ex[X¢Zo v e %0 =]

Action-value function: evaluates policy 7 starting from
state x and action a:

Q" (x,a) = ER[Z?O:O Vtrt |Xo = X,0p = al

“Optimal policy *
= argmax V™ (xy)”
T

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 7* that satisfies

VT (x) = max VT (x) (Vx)

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy =™ that satisfies

VT (x) = max VT (x) (Vx)

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy =™ that satisfies

VT (x) = max VT (x) (Vx)

Optimal policy: a policy *
that satisfies the above

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 7* that satisfies

VT (x) = max VT (x) (Vx)

o1 EIRGISTHERG|IF /48 The optimal value function:
that satisfies the above Vr=vm™

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy r satisfies the

system of equations (Vx € X)
Ve(x) =r(x, () + v Xy Pylx, m(x)) V7 (y)

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy r satisfies the

system of equations (Vx € X)
VT(x) = r(x,m(x)) + v Xy Plx, m(x)) VT (y)

Proof:
Ve(x) = E;[Xl Vtr(xt; a,) |xo = x|

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy r satisfies the

system of equations (Vx € X)
VT(x) = r(x,m(x)) + v Xy Plx, m(x)) VT (y)

Proof:
V*(x) = Ep[X¢Z0 yir(xe, ag) |xo = x]
= ‘r(x,n(x)) +E X2 v r(xg, ap) |xg = x]

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy r satisfies the

system of equations (Vx € X)
VT(x) = r(x,m(x)) + v Xy Plx, m(x)) VT (y)

Proof:
V*(x) = Ep[X¢Z0 yir(xe, ag) |xo = x]
= ‘r(x,n(x)) +E X1 v r(xg, ap) |xg = x]

=r(x,n(x)) + yz P(ylx, m(x)) Ex[XeZ1 v r(xe, ae) 1% = y]
y

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy r satisfies the

system of equations (Vx € X)
VT(x) = r(x,m(x)) + v Xy Plx, m(x)) VT (y)

Proof:
V*(x) = Ep[X¢Z0 yir(xe, ag) |xo = x]
= ‘r(x,n(x)) +E X1 v r(xg, ap) |xg = x]

=r(x,n(x)) +]/Z P(ylx, m(x)) Ex[XeZ1 v ' r(xe, ae) 1% = y]
y

= r(x,7(0)) + yzypmx, () V™ (7) -

| THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

V*(x) = max {T(x, a) +y 2 P(ylx,a) V*(y)}
y

| THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

V*(x) = max {r(x, a) + yz P(ylx,a) V*(y)}
y

Theorem
An optimal policy 7" satisfies

m*(x) € argmax {r(x, a) + yz Py, a) V*(y)}
y

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

Q'(r,@) = (@) +y) POIx &) max Q' (y,b)
y

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

Q'(r,@) = (@) +y) POIx &) max Q' (y,b)
y

Theorem
An optimal policy * satisfies
n*(x) € argmax Q*(x, a)
a

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

Q'(r,@) = (@) +y) POIx &) max Q' (y,b)
y

Theorem
An optimal policy * satisfies
n*(x) € argmax Q*(x, a)
a

= greedy with respect to Q*

SHORT SUMMARY SO FAR

So far, we have characterized

* The value functions of a given policy

* The optimal policy through value functions

* The optimal value functions

* The optimal policy through the optimal value functions

SHORT SUMMARY SO FAR

So far, we have characterized

* The value functions of a given policy

* The optimal policy through value functions

* The optimal value functions

* The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE
OPTIMAL VALUE FUNCTION??

... also, is there a way to clean up this mess? See part 2!

EASY ANSWER FOR FINITE-HORIZON PROBLEMS

Bae: Come over
Dijkstra: But there are so many routes to take and
I don't know which one's the fastest

Bae: My parents aren't home
Dijkstra:

Dijkstra's algorithm m Y S
Graph search algorithm
Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between Dijkstra's algorithm
nodes in a graph, which may represent, for example, road networks. It was
conceived by computer scientist Edsger W. Dijkstra in 1956 and published
three years later.['¥2]

The algorithm exists in many variants; Dijkstra's original variant found the
shortest path between two nodes,?! but a more common variant fixes a
single node as the "source” node and finds shortest paths from the source
to all other nodes in the graph, producing a shortest-path tree.

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

DYNAMIC PROGRAMMING

Dynamic programming

computing value functions
through repeated use of the
“Bellman operators”

THE BELLMAN OPERATOR

Bellman operator T7":
maps a function V € R*to another function T™V € R*:

(T™V)(x) = r(x,m(x)) +v I, Pylx, 1)V ()

THE BELLMAN OPERATOR

Bellman operator T7":
maps a function V € R*to another function T™V €

(T™V)(x) = r(x,m(x)) +v I, Pylx, 1)V ()

THE BELLMAN OPERATOR

Bellman operator T7":
maps a function V € R*to another function T™V €

(T™V)(x) = r(x,m(x)) +v I, Pylx, 1)V ()

The Bellman Equations:

V() = r(x,m(x) + v Xy POlx, m(x)) V7 (y)

THE BELLMAN OPERATOR

Bellman operator T7":
maps a function V € R*to another function T™V €

(T™V)(x) = r(x,m(x)) +v I, Pylx, 1)V ()

The Bellman Equations:
YT = Try™

THE BELLMAN OPERATOR

Bellman operator T7":
maps a function V € R*to another function T™V €

(T™V)(x) = r(x,m(x)) +v I, Pylx, 1)V ()

V™ is the fixed point of T™

The Bellman Equations:

YT = TRyY™

POLICY EVALUATION USING
THE BELLMAN OPERATOR

‘@j |dea: repeated application of T™ on any
=~ function V; should convergeto V7. ..

POLICY EVALUATION USING
THE BELLMAN OPERATOR

‘@’ |dea: repeated application of T™ on any
* function V, should convergeto V" ...

aiC

...and it works!!

Power iteration
Input: arbitrary I/;: X - Randn

Fork = 1,2, ..., compute
Vieyr =TV,

POLICY EVALUATION USING
THE BELLMAN OPERATOR

‘@’ |dea: repeated application of T™ on any
* function V,, should convergeto IV'™...

aiC

...and it works!!

Power iteration
Input: arbitrary I/;: X - Randn
Fork = 1,2, ..., compute

Vieger =TTV,

Theorem: lim V,, = V7™

k— o0

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vigr =1 +yP"V

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)
=1+ yP"r + (yP™®)%r + -+ (yP®)*r

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)
=7+ YPr + (yP™)?%r + -+ (yP™®)*r

= Z(VP”)"r
t=0

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)
=7+ YPr + (yP™)?%r + -+ (yP™®)*r

Geometric sum!
m\k
Z (yP™)*r (von Neumann series)

= (1= yP™)! (I = (yP™*)r

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)
=7+ YPr + (yP™)?%r + -+ (yP™®)*r

Geometric sum!
(von Neumann series)

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

* Power iteration can be written as the linear recursion
Vi1 =17 +VYP"V, =1+ yP*™(r + yP™V;_1)
=7+ YPr + (yP™)?%r + -+ (yP™®)*r

Geometric sum!
(von Neumann series)

= The value function VT satisfies
VP =r+yP™V" < V*® = —-yP™) 1r

POWER ITERATION IN ACTION

Gridworld MDP

POWER ITERATION IN ACTION

Gridworld MDP

 State: location on the grid
* Actions: try to move in one of 8 directions or stay put
 Transition probabilities:

* move successfully w.p.p = 0.5

» otherwise move in neighboring direction

POWER ITERATION IN ACTION

Gridworld MDP

Reward: +100 Reward: +500

 State: location on the grid
* Actions: try to move in one of 8 directions or stay put
 Transition probabilities:

* move successfully w.p.p = 0.5

» otherwise move in neighboring direction

POWER ITERATION IN ACTION

Vhat , iteration O

Uniform policy:

w(a|x) =%

for all actionsa € {1,2, ..., 9}

POWER ITERATION IN ACTION

Vhat ., iteration 1

Uniform policy:

w(a|x) =%

for all actionsa € {1,2, ..., 9}

POWER ITERATION IN ACTION

Vhat , iteration 5

Uniform policy:

w(a|x) =%

for all actionsa € {1,2, ..., 9}

POWER ITERATION IN ACTION

Vhat ., iteration 10

Uniform policy:

w(a|x) =%

for all actionsa € {1,2, ..., 9}

POWER ITERATION IN ACTION

Vhat _, iteration 100

Uniform policy:

w(a|x) =%

for all actionsa € {1,2, ..., 9}

POWER ITERATION IN ACTION

Vhat |, iteration O

“Upwards” policy:
m(uplx) =1

POWER ITERATION IN ACTION

Vhat |, iteration 1

“Upwards” policy:
m(upl|x) =1

POWER ITERATION IN ACTION

Vhat |, iteration 5

“Upwards” policy:
m(upl|x) =1

POWER ITERATION IN ACTION

Vhat |, iteration 10

“Upwards” policy:
m(upl|x) =1

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator T*:
maps a function V € R* to another function T*V € R*:

(T*V)(x) = max{r(x,a) +y 2y P(ylx,)V (y)}

THE BELLMAN OPTIMALITY OPERATOR

r.h.s. of BOE

Bellman optimality operator T*:
maps a function V € R* to another function T*V € R*:

(T*V)(x) = max{r(x,a) +y 2y P(ylx,)V (y)}

THE BELLMAN OPTIMALITY OPERATOR

r.h.s. of BOE

Bellman optimality operator T*:
maps a function V € R* to another function T*V € R*:

(T*V)(x) = max{r(x,a) +v Xy P(ylx,a)V ()}

The Bellman Optimality Equations:
V*(x) = mc?x{r(x, a) +v 2y P(ylx, a) V*(y)}

THE BELLMAN OPTIMALITY OPERATOR

r.h.s. of BOE

Bellman optimality operator T*:
maps a function V € R* to another function T*V € R*:

(T*V)(x) = max{r(x,a) +v Xy P(ylx,a)V ()}

V* is the fixed point of T*

The Bellman Optimality Equations:

VALUE ITERATION

_‘(%{H ldea: repeated application of T* on any

i

=" function V, should convergeto V"...

S

...and it works!!

VALUE ITERATION

@’ |dea: repeated application of T* on any
‘=~ function I/, should convergeto V"...

di

...and it works!!

Value iteration
Input: arbitrary function V,: X - R

Fork = 1,2, ..., compute
Vieyr =T Vg

VALUE ITERATION

‘@’ |dea: repeated application of T* on any
* function V, should convergeto V"...

aiC

...and it works!!

Value iteration
Input: arbitrary function V,: X - R
Fork = 1,2, ..., compute

Vieyr =T Vg

Theorem: lim V,, =V~

k— oo

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction

* for any two functions V and V', we have
ITV =T V'lw < ¥V =Vl

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction
* for any two functions V and V', we have
IT*V =TVl <¥IIV =Vl
" repeated application gives
Wki1 = Vil = IT*Vy = T*V7|

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction
* for any two functions V and V', we have
IT*V =TVl <¥IIV =Vl
" repeated application gives
Wki1 = Vil = IT*Vy = TV
<¥lVk = Vlo

THE CONVERGENCE OF VALUE ITERATION:

PROOF SKETCH

Key idea: T is a contraction

* for any two functions V and V', we have
ITV =T V'lw < ¥V =Vl

" repeated application gives
W1 = Villw = TV} = T*V”
< ¥V = Vo
<Y Vi—y = V*

0.0)

0.0)

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction

* for any two functions V and V', we have
1TV =TVl < VIV =Vl
" repeated application gives
IWVks1 =Vl = [TV =TVl
<V|IVk V¥l oo
= V ?{| Vi 1 — Voo
< YRV, - V1l

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction

* for any two functions V and V', we have
1TV =TVl < VIV =Vl
" repeated application gives
IWVks1 =Vl = [TV =TVl
<V|IVk V¥l oo
= V ?{| Vi 1 — Voo
< YRV, - V1l

*thus
,liggoIIVk+1 —V*|lo =0

VALUE ITERATION IN ACTION

Gridworld MDP

Reward: +100 Reward: +500

 State: location on the grid
* Actions: try to move in one of 8 directions or stay put
 Transition probabilities:

* move successfully w.p.p = 0.5

» otherwise move in neighboring direction

VALUE ITERATION IN ACTION

Vhat , iteration O

VALUE ITERATION IN ACTION

Vhat , iteration 1

VALUE ITERATION IN ACTION

Vhat , iteration 5

VALUE ITERATION IN ACTION

Vhat , Iteration 10

VALUE ITERATION IN ACTION

Vhat , iteration 20

VALUE ITERATION IN ACTION

Vhat , iteration 50

VALUE ITERATION IN ACTION

Vhat , iteration 100

VALUE ITERATION IN ACTION

Vhat , iteration 500

VALUE ITERATION IN ACTION

Optimal Polic

POLICY ITERATION

POLICY ITERATION

Greedy policy with respect to I/:
(GV)(x) = arg mc?x{r(x, a) + Xy P(ylx, a)V(x)}

POLICY ITERATION

Greedy policy with respect to I/:
(GV)(x) = arg mc?x{r(x, a) + Xy P(ylx, a)V(x)}

Policy Iteration
Input: arbitrary function V,: X - R

Fork = 0,1, ..., compute
M =G(Vi), Vigq =VTk

POLICY ITERATION

Greedy policy with respect to I/:
(GV)(x) = arg mc?x{r(x, a) + Xy P(ylx, a)V(x)}

Policy Iteration
Input: arbitrary function V,: X - R

Fork = 0,1, ..., compute

M =G(Vi), Vigqp =V7k

Theorem: lim V,, = V*

k—oo

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: T is a contraction

* for any two functions V and V', we have
1TV =TVl < VIV =Vl
" repeated application gives
IWVks1 =Vl = [TV =TVl
<V|IVk V¥l oo
= V ?{| Vi 1 — Voo
< YRV, - V1l

*thus
,liggoIIVk+1 —V*|lo =0

oY)
ITERATION:

THE CONVERGENCE OF

PROOF SKET(H Just replace T* with the
operator
Key idea: T* is a contraction B*:V (T¢W)”

* for any two functions V and V', we have
ITV =TVl <vIIV-=V'lle
" repeated application gives
Wks1 =Vl = IT"V =TV
< VIIVk V¥l oo
= V [|Vier = V¥ loo
< - S yMIV - V1l

*thus
,lijgoIIVk+1 —V*|lo =0

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods

» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

Vi

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

improve policy
T, = GVk

Vk A%

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

improve policy
k= GV

TC

Vk A%

evaluate policy
Viegr = V7E

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration: Approximate policy iteration:
improve policy improve policy
V T, = GVk V Ty, =~ GVk

evaluate policy evaluate policy
Viegr = V7E Vier1 = VT

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Approximate policy iteration:

Fundamental RL tasks:

 Policy evaluation
* Policy improvement . :
improve policy

T, = GVk T, ~ GVk

Vk A% Vk A%

evaluate policy evaluate policy
Viegr = V7E Vier1 = VT

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Approximate policy iteration:

Fundamental RL tasks:

* Policy evaluation
 Policy improvement f\
improve policy
k = GV

Challenges in RL: ~N T

* Unknown transition and reward V
K I

functions = have to learn from

sample access only evaluate policy
» State/action space can be large]7 ~ Tk
= V* and r* cannot be stored in w
memory

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Approximate policy iteration:

Fundamental RL tasks:

* Policy evaluation
 Policy improvement f\
improve policy
k = GV

Challenges in RL: A\ T

* Unknown transition and reward V
K I

functions = have to learn from

sample access only evaluate policy
 State/action space can be large V... ~ VT
= V* and * cannot be stored in w
memory

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Full knowledge of P

= Planning (not RL)

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Generative model:
Full sample access to P(: |x,a) forany (x,a)

Full knowledge of P
= Planning (not RL)

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from full trajectories
+ reset action or save states

Generative model:

Full sample access to P(: |x,a) forany (x,a)

Full knowledge of P
= Planning (not RL)

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory
= online RL

Samples from full trajectories
+ reset action or save states

Generative model:
Full sample access to P(: |x,a) forany (x,a)

Full knowledge of P
= Planning (not RL)

Unknown transition and reward functions
= have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Samples from a single trajectory
= online RL

Samples from full trajectories
+ reset action or save states

Generative model:
Full sample access to P(: |x,a) forany (x,a)

Full knowledge of P
= Planning (not RL)

State/action space can be large
= I/* and r* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

‘@f Idea: approximate IV* and/or 7* in a
<~ computationally tractable way!

State/action space can be large
= I/* and r* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

‘@j Idea: approximate IV* and/or 7* in a
<~ computationally tractable way!

Approximating VV*:
linear function approximation
* Define a set of d features:

(,bi:X — R

= Parametrize value functions as
Vo(x) = 0" ¢(x)

* Learning V* < Learning a good 6,
VQ* =~V

State/action space can be large
= I/* and r* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

-@i |dea: approximate V* and/or 7" in a

i

= computationally tractable way!

-

Approximating VV*: Approximating *:
linear function approximation parametrized policies
* Define a set of d features: * Define a set of d features:
¢p;:X >R p;: X XA->R
- Parametrize value functions as - Parametrize (stochastic) policies as
Vo(x) = 0" p(x) g (alx) o« exp(8Tp(x))

* Learning /' & Learning a good 0, * Learning m* < Learning a good 0,
VQ* =~V Tlgx = "

State/action space can be large
= I/* and r* cannot be stored in memory

DEALING WITH LARGE STATE SPACES

E_

_‘j@’ Idea: approximate IV* and/or 7* in a
<~ computationally tractable way!

Approximating VV*: Approximating *:
linear function approximation parametrized policies
Define a set of d features: * Define a set of d features:

¢;:X - R p;: X XA->R
Parametrize value functions as - Parametrize (stochastic) policies as
Vo(x) = 67 p(x) mg(alx) « exp(HTc,b(x))

Learning V* < Learning a good 6, * Learning m* < Learning a good 0,
Vg* =~V Tlgx = "

%A <AEE——
FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

-

' ‘&' I
=
5

Wik S\

FEATURE MAP EXAMPLE

“PROST” FEATURES FOR ATARI GAMES

High-dimensional
observations:
192x160 pixels

“PROST” FEATURES FOR ATARI GAMES

“PROST” FEATURES FOR ATARI GAMES

High-dimensional
observations: :
192x160 pixels

R Eacs s | 5 ===
= Low-dimensional ; I ; II.

sat B8l observations: ==
e patcull_ll.

METHODS FOR

POLICY EVALUATION

A GENTLE START: MONTE CARLO

Observe:
Policy evaluation = estimating I/™:
TVT(x) = Ep X0y ir(xg, ap) |xg = x]

A GENTLE START: MONTE CARLO

Observe:
Policy evaluation = estimating IV'™:
VT (x) = Ex[XeZo v r(xe ar) |xo = x]

_Cl/ﬁfﬁ ldea:
‘=~ approximate E [-] by sample averages!

Simulate N trajectories using policy

* For every state x that appears in the trajectories, let
Vn(x) = an(R1:N(x))

A GENTLE START: MONTE CARLO

7oy, ldea:
=~ approximate E[-] by sample averages!

Simulate N trajectories using policy 7
" For every state x that appears in the trajectories, let

Py (x) = avg(Ryn (%))

A GENTLE START: MONTE CARLO

Y ldea:
@ approximate E_[-] by sample averages!

<

Simulate N trajectories using policy 7
" For every state x that appears in the trajectories, let

Py (x) = avg(Ryn (%))

Collection of discounted

returns Y.7_, ytr, after first
visit to x

A GENTLE START: MONTE CARLO

_ ldea:
@ approximate E_[-] by sample averages!

<

Simulate N trajectories using policy 7
" For every state x that appears in the trajectories, let

Py (x) = avg(Ryn (%))

Collection of discounted
returns Y.7_, ytr, after first

Average of i.i.d.
random variables:

hm VN == VT[

N—>o0

visit to x

MONTE CARLO WITH FEATURES

Monte Carlo olic evaluation
Input:

N trajectories ~ m, feature map ¢: X — R¢

Output:
A~ : 2
My = aug i 12 [(HTc/)(x) — Ryy(x))]

MONTE CARLO WITH FEATURES

Monte Carlo olic evaluation
Input:

N trajectories ~ m, feature map ¢: X — R¢
Output:

Vi = arg min E, [(07¢() — R (x))']

Least-squares fit of
discounted returns

PROPERTIES OF MONTE CARLO

© Value estimates converge to true values ©

© Doesn’t need prior knowledge of P or r ©

PROPERTIES OF MONTE CARLO

© Value estimates converge to true values ©
© Doesn’t need prior knowledge of P orr ©

@ Doesn’t make use of the Bellman equations ®

A BETTER OBJECTIVE?

LY
()=

Idea: construct an objective that uses
the Bellman equations

A BETTER OBJECTIVE?

‘@’ ldea: construct an objective that uses
the Bellman equations

<

The Bellman error

L(V) = Exey [(T7V () = V()]

TEMPORAL DIFFERENCE LEARNING

“ I ’
@
.ﬁ”__"’%

ldea: use stochastic approximation to
reduce instantaneous Bellman error

Ay = (TﬂVt(xt) — I7t(xt))z

TEMPORAL DIFFERENCE LEARNING

ldea: use stochastic approximation to
reduce instantaneous Bellman error

Ay = (Tth(xt) — Vt(xt))z

GII@
|

TDO

Input: arbitrary function Vy: X - R
Fort =0,1, ...,

5tA= T+ VVt(Axtﬂ) — Vi (x¢)
Viv1(x) = V() + a6y

TEMPORAL DIFFERENCE LEARNING
TD(0)

Input: arbitrary function Vy: X - R
Fort =0,1, ...,

6tA: T + VVt(Axtﬂ) — Vi ()
Vir1(xe) = Vi) + ;6

Converges if step-sizes satisfy
Yizo@ = and ¥Z,af < oo
(e.g., a; = c/t does the job)

TEMPORAL DIFFERENCE LEARNING
TD(0)

Input: arbitrary function Vy: X - R
Fort =0,1, ...,

6tA: T + VVt(Axtﬂ) — Vi ()
Vir1(x) = Vi) + ;6

Converges if step-sizes satisfy
Yizoar =00 and Yiljaf < oo
(e.g., a; = c/t does the job) In equilibrium,
E[r: + vV (xe41) — V(x| =0

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let ¢: X — R? be a feature vector

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let ¢: X — R? be a feature vector
Approximating V™ (x) ~ 8" ¢(x) by TD(0):

TD(0) with LFA

Input: arbitrary param. vector 6, € R
Fort =20,1, ...,

6 =1 +y0; d(xeq) — 0 p(xp)
Orrq = O + 6P (x4)

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let ¢: X — R? be a feature vector
Approximating V™ (x) ~ 8" ¢(x) by TD(0):

TD(0) with LFA

Input: arbitrary param. vector 6, € R
Fort =20,1, ...,

6 =1 +y0; d(xeq) — 0 p(xp)
Orrq = O + 6P (x4)

This still converges to V" !l!

OK, well, somewhere nearby...

TD(0) WITH
NONLINEAR FUNCTION APPROXIMATION

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Let Vy: X — R be a parametric class of
functions (e.g., deep neural network

Approximating V'™ (x) = Vg (x) by TD(0):

TD(0) with general FA

Input: arbitrary param. vector , € R¢
Fort =0,1, ...,

6t =11 + ¥V, (Xt41) — Vo, (x¢)
Ory1 = 0 + @ 6:VgVy, (x;)

TD(0) WITH
NONLINEAR FUNCTION APPROXIMATION

LetV,:X - Rbeap Not much is known about
9.
functions (e.qg., deef convergence &

Approximating V™ (x) =~ Vy(x) by TD(0):
TDO with general FA

Input: arbitrary param. vector , € R¢
Fort =0,1, ...,

6t =11 + ¥V, (Xt41) — Vo, (x¢)
Ory1 = 0 + @ 6:VgVy, (x;)

PROPERTIES OF TD(0)

© Value estimates converge to true values ©
© Doesn’t need prior knowledge of P or r ©

© Based on the concept of Bellman error ©

PROPERTIES OF TD(0)

© Value estimates converge to true values ©
© Doesn’t need prior knowledge of P orr ©

© Based on the concept of Bellman error ©
= “bootstrapping”

WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA

Input: arbitrary param. vector 8, € R?
Fort =0,1, ...,

6:(0) =1 +v0 P (xr11) — 0 Pp(x¢)
Ory1 = 0 + a;:6.(0,)p(xt)

WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA

Input: arbitrary param. vector 8, € R?
Fort =0,1, ...,

6:(0) =1 +v0 P (xr11) — 0 Pp(x¢)
Ory1 = 0 + a;:6.(0,)p(xt)

In the limit, TD(0) finds a 8* such that
E[6:(0")¢(x)] =0

WHERE DOES TD(0) CONVERGE TO?

~~ ldea: given a finite trajectory, approximate
. the TD fixed point by solving

b
il
[y

E[5:(6)p (x0)] ~ Z 5:(0)p(xc) = 0

WHERE DOES TD(0) CONVERGE TO?

?lq |dea: given a finite trajectory, approximate

=-(/)=

~/v the TD fixed point by solving
E[5:(6)p (x0)] ~ Z 5:(0)p(xc) = 0

Equ1valently
TZ ¢(xt)(¢(xt) V¢(xt+1)) 0 = TETth(xt)

| WHERE DOES TD(0) CONVERGE TO?

GII@I:-
|

This is a linear system

ATH — bT
Solution:

Equiyalently:
1
fz ¢(Xt)(¢(xt) — V¢(xt+1)) v
t=1

Ar Dy

| WHERE DOES TD(0) CONVERGE TO?

GII@I:-
|

This is a linear system

ATH — bT
SOlUtion: HT — A'Z_wle

Equiyalently:
1
fz ¢(Xt)(¢(xt) — V¢(xt+1)) v
t=1

Ar Dy

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTDO

Input: trajectory (x;, a, 1) i—4

HT - AleT
Vr = 67¢

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTDO

Input: tra]ectory (xt A, Te) P-4

VT — 97T¢

© converges to same 8* as TD(0) ©

© no need to set step sizes a; ©

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTDO
Input: trajectory (x;, a, 1) i—4
Or = Ap'br
Vr =07 ¢
© converges to same 6* as TD(0) © | TD(0):
0(Td)

© no need to set step sizes a; ©

® computational complexity: 0(Td* + d3) ®

® A7! may not exist for small T &

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem
In the limit T — oo, LSTD(0) and TD(0) both

minimize the projected Bellman error

(1,7 (1 -V () |

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem
In the limit T — oo, LSTD(0) and TD(0) both
minimize the projected Bellman error

L(V) = Ey_, [(n

1-v) |

Projection onto span
of features

i

improve policy

evaluate policy
Vier1 = VT

SO0 far:

policy evaluation

FROM POLICY EVALUATION
POLICY IMPROVEMENT

improve policy
AN\ My, ~ GVR

Vi Ty

evaluate policy
Vier1 = VT
now for the real deal:

policy eval + improvement

FROM POLICY EVALUATION
POLICY IMPROVEMENT

OFF-POLICY CONTROL: Q-LEARNING

_@i Idea: Let’s try to
'S« directly learn about Q*, and
* improve the policy on the fly!

| OFF-POLICY CONTROL: Q-LEARNING

7. ldea: Let’s try to

I |
‘k\} F
e ™ -

'S« directly learn about Q*, and
* improve the policy on the fly!

arg max xX,a), w.p. 1—¢
T[t(X) — 8 Qt() p

» Compute e-greedy policy w.r.t. Q;:
Tuniform random action, W.p. €

- Improve estimated Q,,; by reducing Bellman error

Ay = (E [Tt +y mC?X @t(xt+1» a)] — ét(xt» at))

| OFF-POLICY CONTROL: Q-LEARNING

Off-policy learning:
evaluating ©* while
@ |dea: Let’s try to following suboptimal policy!

 directly learn about Q*, and
* improve the policy on the fly!

di

arg max xX,a), w.p. 1—¢
T[t(X) — 8 Qt() p

» Compute e-greedy policy w.r.t. Q;:
Yuniform random action, W.p. €

- Improve estimated Q,,; by reducing Bellman error

Ay = (E [Tt +y maaX @t(xt+1» a)] — ét(xtl at))

OFF-POLICY CONTROL: Q-LEARNING

Q-learning
Input: arbitrary Q: X x A > R

Fort =0,1, ...,

Choose action a; ~ -greedy w.r.t. Q;
Observe 1y, x4, 4
Compute

Oy =1ty mC?X ét(xt+1: a) — Qt(xt: a;)
Qr+1(xs,ar) = Qi(xt, ar) + a;6;

ON-POLICY CONTROL: SARSA

SARSA

Input: arbitrary Q: X x A > R
Fort =0,1, ...,

» Choose action a; ~ e-greedy w.r.t. Q;

e Observery, Xpiq, Qriq

* Compute
é:\t =Tt VQt(x£+1' ary1) — Qe (xy, ap)
Qe+1(xe, ar) = Qe(xe, ar) + a6y

ON-POLICY CONTROL: SARSA

SARSA
Input: arbitrary Q: X x A > R

Fort =0,1, ...,
Choose action a; ~ -greedy w.r.t. Q;
Observe 1y, X;11, Ariq a;,, ~ € —greedy:
Compute on-policy

8 =1 + 70 (xpy1, abyq) — Qg ar)

Qri1(x, ar) = Qe(xy, ap) + a6,

ON-POLICY CONTROL: SARSA

SARSA
Input: arbitrary Q: X x A > R

Fort =0,1, ...,
Choose action a; ~ -greedy w.r.t. Q;
Observe 1y, X;11, Ariq a;,, ~ € —greedy:
Compute on-policy

8 =1 + 70 (xpy1, abyq) — Qg ar)

Qri1(x, ar) = Qe(xy, ap) + a6,

SARSA = (s, A4, 7t St 41, At 41)

ON-POLICY CONTROL: SARSA

SARSA ~ XARXA
Input: arbitrary Q: X x A > R

Fort =0,1, ...,
Choose action a; ~ -greedy w.r.t. Q;
Observe 1y, X;11, Ariq a;,, ~ € —greedy:
Compute on-policy

8 =1 + 70 (xpy1, abyq) — Qg ar)

Qri1(x, ar) = Qe(xy, ap) + a6,

SARSA = (s, A4, 7t St 41, At 41)

()-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule
Orr1 = 0 + a0tV Qg (x¢, ar)

()-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule
Orr1 = 0 + a0tV Qg (x¢, ar)

* SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

()-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule
Orr1 = 0 + a0tV Qg (x¢, ar)

* SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

* Q-learning may diverge catastrophically

()-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule
Orr1 = 0 + a0tV Qg (x¢, ar)

* SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

* Q-learning may diverge catastrophically

* Proposed fixes: gradient TD algorithms, emphatic TD algorithms,
double Q-learning, soft Q-learning, G-learning,...

()-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule
Ori1 =0 + ;0. VgQo(x¢, ar)

* SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

* Q-learning may diverge catastrophically

* Proposed fixes: gradient TD algorithms, emphatic TD algorithms,
double Q-learning, soft Q-learning, G-learning,...

* Practical solution: tune it until it works 7
/-—-'..;

DIVERGENCE OF
OFF-POLICY TD LEARNING

300

The “deadly triad”:

* Function approximation
- Bootstrapping

= Off-policy learning

200

100L

Steps

DIVERGENCE OF
OFF-POLICY TD LEARNING

300

The “deadly triad”:

* Function approximation
- Bootstrapping

= Off-policy learning

200

BUT

Divergence is typically not too

100L

extreme when behavior policy
is close to evaluation policy 10
and FA is linear

Steps

DEEP
REINFORCEMENT
LEARNING

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize Q-function/policy by a deep net

hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTDO

Input: tra]ectory (xt Ap, 1) peq
VT = 07 ¢

B

ldea not directly applicable to non-
linear function approximation!

BB

LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

2
L(8) = Exey [(T™Ve () — Vo ()|
by stochastic gradient descent????

LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

2
L(8) = Exey [(T7Ve () — Vo ()|
by stochastic gradient descent????

NO!!

Bellman error involves a double expectation:

L(B) = Ex[f(ei X, EY[leD]

can’t get unbiased gradients!

LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

L(O) =E. _ [The infamous
Q o ‘ “double sampling™

issue of RL

by stochastic ¢

Bellman error involves a double expectation:

L(0) = Ex[£(6; X, Ey[Y[X])]

can’t get unbiased gradients!

TACKLING DOUBLE SAMPLING

*Saddle-point optimization:
min E[f(6; X, E[Y |X])]

TACKLING DOUBLE SAMPLING

*Saddle-point optimization:
min E[f(6; X, E[Y|X])*] =

m@in mZaXE[Z(X,) f(0;X,E[Y]|X]] — E[z%(X,Y)]

TACKLING DOUBLE SAMPLING

No nested

: C ey expectation here!
*Saddle-point optimization:

mein E[f(6; X, E[Y|X]D?] =

m@in mZaXE[Z(X,) f(0;X,E[Y]|X]] — E[z%(X,Y)]

= “modified Bellman residual” (Antos et al. 2008),
“Gradient TD” methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

TACKLING DOUBLE SAMPLING

*Saddle-point optimization:

No nested
expectation here!

mein E[f(6; X, E[Y|X]D?] =

m@in maxE|[z(X,Y) - f(6;X,E
YA

= “modified Bellman residua

YIXD] - E[z*(X, Y)]

” (Antos et al. 2008),

“Gradient TD” methods (Sutton et al. 2009),

SBEED (Dai et al., 2018)

*[terative optimization schemes

TACKLING DOUBLE SAMPLING

*Saddle-point optimization:

No nested
expectation here!

mein E[f(6; X, E[Y|X]D?] =

m@in maxE|[z(X,Y) - f(6;X,E
YA

= “modified Bellman residua

YIXD] - E[z*(X, Y)]

” (Antos et al. 2008),

“Gradient TD” methods (Sutton et al. 2009),

SBEED (Dai et al., 2018)

*[terative optimization schemes

FITTED POLICY EVALUATION

- ldea: compute sequence of value

/.

_ functions by minimizing
' n

Ln(Vi Vk) = %z (7"1: + Vi (xpq1) — V(xt))z

t=1

W,

FITTED POLICY EVALUATION

GII:E@:

ldea: compute sequence of value
~ functions by minimizing

n(V Vk) = z <Tt + Ve (xe11) — V(xy))

Target Free variable

This can be finally treated as a

regression problem & solved by SGD!

| FITTED POLICY ITERATION

improve policy
~ GV,

S)
evaluate policy
Vir1 = VT

e-Greedy policy update

Fitted policy evaluation

| FITTED POLICY ITERATION

improve policy
~ GV,

S)
evaluate policy
Vir1 = VT

e-Greedy policy update

Computing policy needs

model of P... better use
Q-functions!

Fitted policy evaluation

| FITTED VALUE ITERATION

@, ldea: compute sequence of Q-value functions by
A minimizing
n

b=

.1 A A ’
Ln(QJ Qk) = gz et mC?X Qr(xes1,a) — Q(x, at))
t=1 ‘—'—’

Target Free variable

FITTED VALUE ITERATION

Fitted value iteration
Input: function space F, Q, € F
Fork =0,1, ...,

* TN = Ge@k

* generate trajectory
n
(xt' Ae, rt)t=1 ~ Ty
* compute

- L (00
Qi+1 = argmin 2(Q; 0x)

FITTED VALUE ITERATION

Fitted value iteration

Input: function space F, Q, € F
Fork =01, ..., Cllomputingl
A policy is triviall
* M = GOk
* generate trajectory
(Xt Ap, Te)r=1 ~ T
* compute

o L (00
Qi+1 = argmin 2(Q; 0x)

FITTED VALUE ITERATION

Fitted value iteration

Input: function space F, Q, € F
Fork =01, ..., Cllomputingl
A policy is triviall
* M = GOk
* generate trajectory
(Xt Ap, Te)f=1 ~ Tg
* compute

o L (00
Qi+1 = argmin 2(Q; 0x)

Convergence can be guaranteed!

under very technical assumptions...

DEEP Q NETWORKS

Parametrize Q-function by a deep neural net

hidden layer 1 hidden layer 2 hidden layer 3
input layer

DEEP Q NETWORKS

| DEEP Q NETWORKS

Minimize the loss

2
E(x.arx")~D (R TY max Qo, (X', b) — Qo (X, A))

+ training tricks:

« Store transitions (x, a,r,x") in replay buffer D to break *
dependence on recent samples

* Compute small updates by mini-batch stochastic
gradient descent

* Use an older parameter vector 6;_,, in target to avoid
oscillations

DEEP Q NETWORKS FOR PLAYING ATARI

Video Pinball

Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider
Tutankham

\

Superhuman
performance!!

BUT results very difficult to

reproduce as the system is
very unstable...

mmmm

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal v
*Policy e But first: ion
ANl some more notation ©

* Temporal

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
TT. X1,A1,X9,A9, ..., Xt P> Q¢

Stationary policy: mapping from states to actions
(no dependence on history or t)
X - a

Let T = (x4, a4, x5, 0a,,...) be atrajectory generated by
running r in the MDP 7 ~ (1, P):
* ap = (Xg, A1, Xp_ 1, e X1)

* Xep1 ~ PC |xg aq)
Expectation under this distribution: E ;||

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Stationary stochastic policy: mapping from states to
action distributions
mAXX - [0,1]
where
n(alx) = Pla; = a|x; = x]

Let T = (x4, a4, x5, 0a,,...) be atrajectory generated by
running r in the MDP 7 ~ (1, P):
* ap = (Xg, A1, Xp_ 1, e X1)

* Xep1 ~ PC |xg aq)
Expectation under this distribution: E ;||

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Stationary stochastic policy: mapping from states to
action distributions
mAXX - [0,1]
where
n(alx) = Pla; = a|x; = x]

Let T = (x4, a4, x5, 0a,,...) be atrajectory generated by
running r in the MDP 7 ~ (1, P):
* ap ~ m(|x)

* Xep1 ~ PC |xg aq)
Expectation under this distribution: E ;||

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

* No terminal state
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[Z?):O ytrt]

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is
R} = Eq[XiZo v r(xe ar)]

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is

R} = Ep[X2o v ir(xe a)]
— En [Zx,a ZI(?C):O ytl{xt=x,at=a} T‘(X, a)]

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is

R} = Ep[X2o v ir(xe a)]
— En [Zx,a ZI?C):O ytl{xt=x,at=a} ’I"(X, a)]

= Zx,a Zt?ozo ytPn[xt = X, = al r(x,a)

T A

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is

R} = Ep[X2o v ir(xe a)]
— En [Zx,a ZI?C):O ytl{xt=x,at=a} ’I"(X, a)]

= Zx,a Zt?ozo ytPn[xt = X, = al r(x,a)

= Zx,a Hr (X, Cl)?"(X, a)

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is

R} = Ep[X2o v ir(xe a)]
— En [Zx,a ZI?C):O ytl{xt=x,at=a} ’I"(X, a)]

= Zx,a Zt?ozo ytPn[xt = X, = al r(x,a)

— Zx,a Ur (x: a)r(x, a) — <~u7T’ ’I‘)

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

*No terminal state, initial state x, ~
* Discount factory € (0,1)
* GOAL: maximize total discounted reward

Ry — E[ZI?C):O ytrt]

Observe: the discounted reward of a policy is
R;/T = (Ur, T)

u, = the discounted occupancy measure
induced by policy m:

Ur(x,a) = Xi20v Prlx, = x,a; = al

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:

* No terminal state, il _ S
.Discount factory ¢ A linear optimization

+ GOAL: maximize tot problem?!
Ry =E gy

Observe: the discounted reward of a policy is
R;/T = Uz, T)

u, = the discounted occupancy measure
induced by policy m:

Ur(x,a) = Xi20v Prlx, = x,a; = al

TOWARDS A LINEAR-PROGRAM
FORMULATION

Theorem
A function u is a discounted occupancy measure of some
(stationary stochastic) policy 7 if and only if it satisfies

D u,a) = (1=9)) uo¥,@) +y) P('Ix, aux, 0)

and X o 1(x,a) = 1/(1 —).

TOWARDS A LINEAR-PROGRAM
FORMULATION

Theorem
A function u is a discounted occupancy measure of some
(stationary stochastic) policy 7 if and only if it satisfies

D u,a) = (1=9)) uo¥,@) +y) P('Ix, aux, 0)

and X q 1(x,a) %1/(1 —).

Linear constraints!

Define A = the set of
occupancy measures U.

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

LP
RY — IlrtlEaAXQt,T')

LP’
R, = min (,uo V)

s.t.V(x) =r(x,a) +]‘;ZR,E,P(ny a)V(y) (Vx,a)

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
RY — IlrtlEaAXQt,T')

Primal LP
R, = min (,uo V)

s.t.V(x) =r(x,a) +]‘;Z]RiP(ylx a)V(y) (Vx,a)

*names are due to tradition

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
RY — IEEaAXQl;r)

Primal LP = The Bellman opt. equations
Vi(x) = mC§X{7"(x, a) +v Xy, Pylx, a)V*(y)}

Assuming py > 0 *names are due to tradition

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM A single numerical

objective to optimize!

Dual LP
RY — IlrtlEaAXQt,T')

Primal LP = The Bellman opt. equations
Vi(x) = mC§X{7”(x, a) +v Xy, Pylx, a)V*(y)}

Assuming py > 0 *names are due to tradition

OPTIMAL SOLUTIONS OF THE LP

Theorem

There exists a basic solution u* € A to the dual LP.

OPTIMAL SOLUTIONS OF THE LP

Theorem

There exists a basic solution u* € A to the dual LP.

“Proof”:
objective (u, r) is bounded on nonempty A

—
there exists optimal solution u* € A
—

there exists basic solution u* € A

OPTIMAL SOLUTIONS OF THE LP

Theorem

There exists a basic solution u* € A to the dual LP.

“Proof”:
objective (u, r) is bounded on nonempty A

—
there exists optimal solution u* € A

= A “corner” of A
there exists basic solution u* € A

EXTRACTING A POLICY

? Question: how do we extract a policy
from a feasible u € A?

EXTRACTING A POLICY

? Question: how do we extract a policy
. fromafeasible u € A?

Corollary
Assume that uy(x) > 0 forall x € X. Then, for any
occupancy measure u € A, there exists a unique policy
such that u = u,, given by

u(x, a)
Zb H(x; b) |

w(alx) =

EXTRACTING A POLICY

? Question: how do we extract a policy
. fromafeasible u € A?

Corollary
Assume that uy(x) > 0 forall x € X. Then, for any
occupancy measure u € A, there exists a unique policy
such that u = u,, given by

u(x, a)
Zb ,U,(X, b) |

Well-defined since

w(alx) =

Y.p u(x,b) > 0byassumption

EXTRACTING A POLICY

? Question: how do we extract a policy
. fromafeasible u € A?

Corollary
Assume that uy(x) > 0 forall x € X. Then, for any
occupancy measure u € A, there exists a unique policy
such that u = u,, given by

u(x, a)
Zb ,U,(X, b) |

Well-defined since

w(alx) =

Basic solutions

=
Deterministic policies

Y.p u(x,b) > 0byassumption

LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”

* Needs some strange conditions that DP theory does not
(1o > 0 for existence results and for optimal policy)

« Temporal aspect is rather abstract
 Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”

* Needs some strange conditions that DP theory does not
(1o > 0 for existence results and for optimal policy)
« Temporal aspect is rather abstract
 Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

Advantages
* Defining optimality is very simple
(no value functions, no fixed points, etc.)
 Easily comprehensible with an optimization background
(single numerical objective)
« Powerful tool for developing algorithms

LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”

* Needs some strange conditions that DP theory does not
(1o > 0 for existence results and for optimal policy)
« Temporal aspect is rather abstract
 Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

Advantages
* Defining optimality is very simple
(no value functions, no fixed points, etc.)
 Easily comprehensible with an optimization background
(single numerical objective)
» Powerful tool for developing algorithms

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
-LP duality in MDPs

DIRECT POLICY OPTIMIZATION

\ /
=+)
Qﬁh

_ ldea: derive algorithms by thinking of
u € A as the decision variable!

DIRECT POLICY OPTIMIZATION

(7. ldea: derive algorithms by thinking of
=~ u € A as the decision variable!

Examples

" Policy gradient methods
= gradient descent on —Ry}

- Relative Entropy Policy Search (REPS)
= mirror descent on —R7

- Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) —R}

| DIRECT POLICY OPTIMIZATION

7> ldea: derive algorithms by thinking of
* u € A as the decision variable!

.;h_“)

Examples

" Policy gradient methods
= gradient descent on —R7

- Relative Entropy Policy Search (REPS)
= mirror descent on —R7

- Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) —R}

POLICY GRADIENT METHODS

Parameter space O

* Construct mapping
0 — Tlg

| P 0 L I CY G R A D I E N T M ET H 0 D S mput ey o0 Taver L idden layer 2 hidden Layes 3
N

Parameter space O

* Construct mapping
0 — Tlg

= 2 2 = AN

Parameter space 0

Construct mapping
0 — Tlg
Define objective function:

— pTo
p(0) =R,

| POLICY GRADIENT METHODS ...

Parameter space O

* Construct mapping

0 - Tlg
/q * Define objective function:
6

p(6) =R)°
* Update parameters by

gradient ascent:
Or+1 = Ok + 2 Vop(6y)

Parameter space O

v

0 - Tlg
Define objective function:
p(6) =R)°
Update parameters by
gradient ascent:

Or+1 = Ok + 2 Vop(6y)

... and hope for convergence

Parameter space O

e

How can we estimate

the gradients?

Construct mapping
0 — Tlg
Define objective function:
p(6) =R)°
Update parameters by
gradient ascent:

Or+1 = Ok + 2 Vop(6y)

... and hope for convergence

| THE POLICY GRADIENT THEOREM

Theorem

Top(6) =) 1p(x)) Vome(alx)Q™(x,0)

| THE POLICY GRADIENT THEOREM

Theorem

Top(6) =) 1p(x)) Vome(alx)Q™(x,0)

Corollary

Assuming that my(alx) > 0 forall x, a,

7op(0) =) g (Img(alx) (Vg logmy(alx) Q" (x, @)

| THE POLICY GRADIENT THEOREM

Theorem

Top(6) =) 1p(x)) Vome(alx)Q™(x,0)

Corollary

Assuming that my(alx) > 0 forall x, a,
Vop(0) = E(z,a)~ugmy Vo logme(al|x) Q™ (%, @)]

THE POLICY GRADIENT THEOREM

Theorem

Vop(2) — N\, AN 7w (106 (x, q)

Gradient can be written as an
expectation!!!!

Corollary
Assutning that my(alx) > 0 forall x, a,

Vop(0) = E(z.a)~uqmy Ve log e (alXx) Q™ (X, @)]

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

@’ Idea: replace expectation by a sample
* mean = stochastic gradient algorithm

i~

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

@ Idea: replace expectation by a sample
‘=" mean = stochastic gradient algorithm

<

REINFORCE
Input: arbitrary initial 6,
Fork =0,1, ...

Obtain sample trajectory (x;, a;, 1t)¢=1 ~ Tg,

Estimate Q) ~ Q™% by Monte Carlo
Estimate g, = Vyp(0;) by the average of

Ikt = Vo logﬂek(atlxt)Qk(xt; ag)
Update 9k+1 = Hk ~+ akgk

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

‘@’ Idea: replace expectation by a sample
‘=" mean = stochastic gradient algorithm

<

REINFORCE

Input: arbitrary initial 6,

Fork =0,1, ...
Obtain sample trajectory (x;, a;, 1t)¢=1 ~ Tg,
Estimate Q) ~ Q™% by Monte Carlo
Estimate g, = Vyp(0;) by the average of

Ikt = Vo logﬂek(at|xt)@k(xt; ag)
Update 0k+1 = Hk + LIk

Elgk] = Vop(6y)

REINFORCE AS DIRECT POLICY SEARCH

Policy gradient update

improve pohcy
T, ~ GVk

evaluate pohcy
Vier1 = VT

Monte Carlo evaluation

REINFORCE AS DIRECT POLICY SEARCH

Policy gradient update

_ _ © direct method: no explicit
1Mprove Pehcy approximation of V™ ©
k= Gy

T
© converges to local optimum ©

Tl'-k © less aggressive updates ©

evaluate policy
Vier1 = VT

® large variance of g;, ©®

Monte Carlo evaluation

ACTOR-CRITIC METHODS

ACTOR

Typical actor:

policy gradient updates
improve policy
=~ GVk

T, ~
T[k Critic:

Monte Carlo = REINFORCE

evaluate policy TD(A)

A _ T
Vigr1 = V7E

LSTD(A)
DQN, ...

CRITIC

A TYPICAL DEEP RL ARCHITECTURE: A3(

Parametrize policy by a deep neural net

hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

output layer

A TYPICAL DEEP RL ARCHITECTURE: A3(

Parametrize policy by a deep neural net

hidden layer 1 hidden layer 2 hidden layer 3
input layer
Yy

output layer

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

1
Op41 = argmax {(9, Vp(6,)) — o 16 — Ht”%}
t

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

1
Op41 = argmax {(9, Vp(6,)) — o 16 — Ht”%}
t

Issue #1.:

Euclidean norm may be
unnatural way to measure
distance between ug and ug,?

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

1
Op41 = argmax {(9, Vp(6,)) — o 16 — Qt”%}
t

Issue #2: Issue #1:
Linearizing p at 6; may Euclidean norm may be
lead to instability? unnatural way to measure

distance between ug and g, ?

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

1
Op41 = argmax {(9, Vp(6,)) — o 16 — Qt”%}
t

Issue #2: Issue #1:
Linearizing p at 6; may Euclidean norm may be
lead to instability? unnatural way to measure

distance between ug and g, ?

+ Issue #3:
Policy gradient estimator
has huge variance ®

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

convex

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

Dual convex program

®: strongly convex function of u:
* smooth optimum

1 1
w= argmﬁX{(M, r)+ 7 CD(M)} = V@)

* regularization effect = better generalization?

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

Policy gradient update

1
0,1 = arg max {(9, Vp(6.)) — o 16 — 9t||%}
t

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

Policy gradient update

1
0,1 = arg max {(9, Vp(6.)) — o 16 — 9t||%}
t

Mirror descent update

|
He+1 = argmax {(u, r)— —D(ulut)}

HEA Nt

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

20 geadient update

1
No.need.for.local 8,)) — —1|6 — 9t||%}
linearization a¢

Mirror descent update

1
il = AL {(u, r) — ED(HLUL“)}

Proximal reqularization through

Bregman divergence D (u|u')
(strongly convexin p)

DIRECT POLICY OPTIMIZATION

7> ldea: derive algorithms by thinking of

V')

=~y € Aas the decision variable!

Examples
" Policy gradient methods
= gradient descent on —Ry}

- Relative Entropy Policy Search (REPS)
= mirror descent on —R”

- Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) —R}

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

1
Her1 = argmax {(u, ry—— D(ulut)}
UEA

Nt

u(x,a)
u'(x,a)

D(ulp') = 2xat(x, a)log

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

1
He+q = argmax {(u, ry—— D(ulut)}
UEA

Nt

u(x,a)
u'(x,a)

D(ulp') = Xxq(x, a) log

Closed-form “policy update”:

Uer1(x,a) = pue(x a)ent(r(x’a)"'yEYIx,a[Vt(J’)]—Vt(x))

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

1
He+q = argmax {(u, ry—— D(ulut)}
UEA

Nt

u(x,a)
u'(x,a)

D(ulp') = Xxq(x, a) log

Closed-form “policy update”:

Uer1(x,a) = pue(x a)ent(r(x’a)"'yEYIx,a[Vt(J’)]—Vt(x))

“Value function”

7, =277

THE REPS VALUE FUNCTION

Theorem
The REPS value function V, is given as

the minimizer of the loss function
L(V) = log ExNHt[ent(T”V(x)—vm)]

THE REPS VALUE FUNCTION

Theorem
The REPS value function V, is given as

the minimizer of the loss function
Z(V) — log ExNHt[ent(Tﬂv(x)—V(X))]

“Proof”: Lagrangian duality.

THE REPS VALUE FUNCTION

Theorem
The REPS value function V; is given as

the minimizer of the loss function
L(V) = log ExNut[ent(T”V(x)—vu))]

“Proof”: Lagrangian duality.

A natural competitor for the Bellman error

L(V) = By [(T™V () = V()" [722

Stay tuned for “deep REPS” results ©

DIRECT POLICY OPTIMIZATION

7> ldea: derive algorithms by thinking of

V)=

=~y € Aas the decision variable!

Examples

" Policy gradient methods
= gradient descent on —Ry}

 Relative Entropy Policy Search (REPS)

THE REGULARIZED BELLMAN EQUATIONS

The Bellman opt. equations

V*(0) = max{r(x,a) + 7 5, Po1x, V" (7))

THE REGULARIZED BELLMAN EQUATIONS

The reqularized Bellman opt. equations

V*(x) = softgnax"{r(x, a) +vy X, P(ylx, a)V*(y)}

THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations

V*(x) = softgnax”{r(x, a) +vy X, P(ylx, a)V*(y)}

Used almost exclusively since ~late 2016
* Better optimization properties:
smooth gradients, less sensitive to errors
« Better exploration:
optimal policy naturally stochastic, no
need for ¢ —greedy trick

THE REGULARIZED BELLMAN EQUATIONS

Is there a natural “dual
explanation?

»

The regularized Bellman opt. equations
V*(x) = softgnax”{r(x, a) +vy X, P(ylx, a)V*(y)}

Used almost exclusively since ~late 2016
* Better optimization properties:
smooth gradients, less sensitive to errors
« Better exploration:
optimal policy naturally stochastic, no
need for ¢ —greedy trick

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations

V*(x) = softgnax”{r(x, a) +vy X, P(ylx, a)V*(y)}

??? Dual convex program ???

~

1
R, = max {(u, r) — ECD(H)}

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected
by Lagrangian duality with the choice

5 u(x, a)
CD(;U) - ; ,u(x, a) logzb‘u(x, b)

_ Z u(x) z m,(alx)logm,(alx)

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected
by Lagrangian duality with the choice

5 u(x, a)
CD(;“) - z ,u(x, a) logzb‘u(x, b)

_ Z u(x) z m,(alx)logm,(alx)

The conditional entropy
of A|X under u

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected
by Lagrangian duality with the choice

u(x, a)
2.p U(x,b)

_ Z u(x) z m,(alx)logm,(alx)

The conditional entropy :
|
of A[X under u A convex function of u!

d(u) = z u(x, a)log

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations

V*(x) = softgnax”{r(x, a) +vy X, P(ylx, a)V*(y)}

Dual convex program

~

1
R, = max {(u, r) — ECD(H)}

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

1
Hi+1 = argmax {(u, r) ——Dg (ulut)}
UEA

Nt

nu(alx)

Te(x,a)

Do (ulps) = 2x,q u(x,a)log

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

1
Hi+1 = argmax {(u, r) ——Dg (ulut)}
UEA

Nt

nu(alx)
Te(x,a)

Do (ulps) = 2x,q u(x,a)log

Closed-form policy update:

T (alx) = ﬂt(alx)e"t(’”("'“)+YE;v|x,a[Vt(y)]—Vt(x))

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

1
Hi+1 = argmax {(u, r) ——Dg (ulut)}
UEA

Nt

ﬂu(alx)
Te(x,a)

Do (ulps) = 2x,q u(x,a)log

Closed-form policy update:

T (alx) = ﬂt(alx)e"t(’”("'“)+YE;v|x,a[Vt(y)]—Vt(x))

Value function I/, = solution to

proximally regularized BOE

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

1
Htyq1 = algmax {(M; r)——Dg (.U|Iit)}

e Nt

nu(alx)

Te(x,a)

Do (ulpe) = Xxa t(x,) log

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

_ _ 1
Hi+1 — argmax {(.U; Qr — Vi) — _ch(ﬂ“it)}
UEA n

t

y(alx)
Te(Xx,a)

Do (ptlpe) = 2x e (%) 2g 1y (alx) log

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Dense surrogate for (u, r)
(works because (u, 7) = (1, Q; — V;) when u € A)

Mirror descent update

_ _ 1
Ht+1 = arg IBaX {(Ii; Qr — Vi) — _ch(ll“it)}

eEA Nt

y(alx)
Te(Xx,a)

Do (plpe) = 2o 11t (x) X nﬂ(alx) log

U; = Usyq, Dut u; can be sampled from

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of
Even-Dar, Kakade and Mansour (2006)

=
lim (e, 7) = (W, 7)

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of
Even-Dar, Kakade and Mansour (2006)

=
lim (e, 7) = (W, 7)

hidden layer 1 hidden layer 2 hidden layer 3

+ more tricks:

* Another surrogate for u
* Truncation of objective
* Constraint vs. penalty

* Mini-batch SGD

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of
Even-Dar, Kakade and Mansour (2006)

=
lim (e, 7) = (W, 7)

| | i | + more tricks:
Literally the most broadly used . Another surrogate for u

deep RL algorithm! « Truncation of objective

(but reading the original paper « Constraint vs. penalty
is not recommended...) alx Mini-batch SGD

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Dual LP
RY — IlrtlEaAXQt,T')

Primal LP
R, = min (,uo V)

s.t.V(x) =r(x,a) +]‘;Z]RiP(ylx a)V(y) (Vx,a)

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Bellman saddle point

min max{{u,r + yPV —V) + (1 = y){to, V)}
V uel

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Bellman saddle point

min max{{u,r + yPV — V) + (1 — y){to, V)}
V uel

~ the Lagrangian of the two LPs

=

solution exists & optimal policy can
be extracted under same conditions

PRIMAL-DUAL 7z-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point

min maxy(u, 7 + yPV = V) + (1 = y){to, V)}
V uel

PRIMAL-DUAL 7z-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point

min max{{u,r + yPV — V) + (1 — y){uo, V)}
V uel

Value update:

Vi1 = Ve + ae(ue — yueP)

Policy update:

s (@) = g1, (x, @) "GO By a7 01T ()

PRIMAL-DUAL 7z-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point

min max{{u,r + yPV — V) + (1 — y){uo, V)}
V uel

Gradient step in primal

Value update:

Vi1 = Ve + ae(ue — yueP)

Exponentiated gradient
step in dual

Policy update:

s (@) = g1, (x, @) "GO By a7 0)I-T: ()

PRIMAL-DUAL 7z-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point

min max{{u,r + yPV — V) + (1 — y){uo, V)}
V uel

Gradient step in primal

~ incremental REPS
state-of-the art sample complexity HeF)

results for discounted & Exponentiated gradient
undiscounted MDPs! step in dual

ylx,a[vt(y)]—Vt(x))

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamic programming
*Policy evaluation, value and policy iteration

*Value-function-based methods
» Temporal differences, Q-learning, LSTD, deep Q networks,...

*Dual view: Linear programming
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

*Markov decision processes part 1
*Value functions and optimal policies

*Primal view: Dynamlc programmmg
*Policy evaluatj : :

*Value-functi
» Temporal diffe

*Dual view:
*LP duality in MDPs

*Direct policy optimization methods
* Policy gradients, REPS, TRPO,...

EXPLORATION VS. EXPLOITATION

reward? I

reward?

NAE

5) - . S?ﬂf\‘a :
LNl
- S . -

tate aCtlon <

Ll A

EXPLORATION VS. EXPLOITATION

reward? reward?

N&NRE reward?
I/) @(A tstate

- reward?

 Multi-armed bandits | \

reward?

* Exploration bonuses
 Thompson sampling
* Monte Carlo tree search

EXPLORATION VS. EXPLOITATION

reward?

e Still no practical
‘ algorithms!

T .) reward?

* Multi-armed bandits | ,
« Exploration bonuses | " reward?
 Thompson sampling &

* Monte Carlo tree search

CONCLUSION

RL is an insanely popular field with
* huge recent successes

*some beautiful fundamental theory
unique algorithmic ideas

CONCLUSION

RL is an insanely popular field with
* huge recent successes

*some beautiful fundamental theory
unique algorithmic ideas

BUT still fundamental challenges in
understanding efficient exploration

* stability of algorithms

* generalizability of successes

CONCLUSION

Come and work on RL theory ;)

BUT still fundamental challenges in
understanding efficient exploration

* stability of algorithms

* generalizability of successes

| CONCLUSION

+ also come see

Come and work on RL theory ;) PARADISE
O

Thanks!!!

