
A PRIMAL-DUAL VIEW OF

REINFORCEMENT LEARNING
Gergely Neu
Univ. Pompeu Fabra

$$$$$$

???

A PRIMAL-DUAL VIEW OF

REINFORCEMENT LEARNING
Gergely Neu
Univ. Pompeu Fabra

$$$$$$

???

???

A PRIMAL-DUAL VIEW OF

REINFORCEMENT LEARNING
Gergely Neu
Univ. Pompeu Fabra

WHAT IS REINFORCEMENT LEARNING?

Learning to
• maximize reward
• in a reactive environment
• under partial feedback

Agent Environment
In state 𝑠,

take action 𝑎

Reward 𝑟,
new state 𝑠′

RL EXAMPLE 0.

RL EXAMPLE 0.

state

RL EXAMPLE 0.

state actions

RL EXAMPLE 0.

state actions

RL EXAMPLE 0.

state actions

next state

RL EXAMPLE 0.

state actions

next state

reward

state actions

next state

reward

RL EXAMPLE 0.

partial observability

state actions

next state

reward

RL EXAMPLE 0.

reward?

partial observability

reward?

reward?

reward?
reward? reward?

WHY SHOULD I CARE?

WHY SHOULD I CARE?

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

• State: pixels on screen
• Actions: joystick
• State transitions: game dynamics
• Reward: score in game

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

Breakthrough in Go

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game

Autonomous driving

WHY SHOULD I CARE?

Breakthrough in
Atari game playing

Breakthrough in Go

• State: stones currently on board
• Actions: place stone on board
• State transitions: own move + adversary’s move
• Reward: +1 for winning the game

Autonomous driving

• State: road conditions, other vehicles, obstacles,…
• Actions: turn left/right, accelerate/brake,…
• State transitions: depending on

state+action+randomness
• Reward: +100 for reaching destination, -100 for

accidents,…

RECOMMENDED READING

•Richard Sutton and Andrew Barto
(2018): “Reinforcement Learning:
An Introduction”
• For an enjoyable (but not very

rigorous) introduction

•Dimitri Bertsekas (2012):
“Dynamic Programming and
Optimal Control”
• For a rigorous treatment of the basics

•Csaba Szepesvári (2012):
“Algorithms for RL”
• For a rigorous description of basic RL

algorithms

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by
• 𝑋: a set of states
• 𝐴: a set of actions, possibly different in each state
• 𝑃: 𝑋 × 𝐴 × 𝑋 → 0,1 : a transition function with 𝑃 ⋅ 𝑥, 𝑎 being the

distribution of the next state given previous state 𝑥 and action 𝑎:
𝐏 𝑥𝑡+1 = 𝑥′ 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 = 𝑃(𝑥′|𝑥, 𝑎)

• 𝑟: 𝑋 × 𝐴 → 0,1 : a reward function

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by 𝑋, 𝐴, 𝑃, 𝑟
• 𝑋: a set of states
• 𝐴: a set of actions, possibly different in each state
• 𝑃: 𝑋 × 𝐴 × 𝑋 → 0,1 : a transition function with 𝑃 ⋅ 𝑥, 𝑎 being the

distribution of the next state given previous state 𝑥 and action 𝑎:
𝐏 𝑥𝑡+1 = 𝑥′ 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 = 𝑃(𝑥′|𝑥, 𝑎)

• 𝑟: 𝑋 × 𝐴 → 0,1 : a reward function

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by 𝑋, 𝐴, 𝑃, 𝑟
Interaction in an MDP: in each round 𝑡 = 1,2, …
• Agent observes state 𝑥𝑡 and selects action 𝑎𝑡
• Environment moves to state 𝑥𝑡+1 ∼ 𝑃(⋅ |𝑥𝑡, 𝑎𝑡)
• Agent receives reward 𝑟𝑡 such that 𝐄 𝑟𝑡 𝑥𝑡, 𝑎𝑡 = 𝑟(𝑥𝑡, 𝑎𝑡)

MARKOV DECISION PROCESSES (MDPS)

A Markov Decision Process (MDP) is characterized by 𝑋, 𝐴, 𝑃, 𝑟
Interaction in an MDP: in each round 𝑡 = 1,2, …
• Agent observes state 𝑥𝑡 and selects action 𝑎𝑡
• Environment moves to state 𝑥𝑡+1 ∼ 𝑃(⋅ |𝑥𝑡, 𝑎𝑡)
• Agent receives reward 𝑟𝑡 such that 𝐄 𝑟𝑡 𝑥𝑡, 𝑎𝑡 = 𝑟(𝑥𝑡, 𝑎𝑡)

GOAL:
maximize “total rewards”!

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
 There is a terminal state 𝑥∗

 GOAL: maximize total reward until final round 𝑇
when 𝑥∗ is reached:

𝑅∗ = 𝐄 𝑡=0
𝑇 𝑟𝑡

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
 There is a terminal state 𝑥∗

 GOAL: maximize total reward until final round 𝑇
when 𝑥∗ is reached:

𝑅∗ = 𝐄 𝑡=0
𝑇 𝑟𝑡

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
 There is a terminal state 𝑥∗

 GOAL: maximize total reward until final round 𝑇
when 𝑥∗ is reached:

𝑅∗ = 𝐄 𝑡=0
𝑇 𝑟𝑡

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

+ other notions:
• long-term average reward
• total reward up to fixed horizon
• …

NOTIONS OF “TOTAL REWARD”

Episodic MDPs:
 There is a terminal state 𝑥∗

 GOAL: maximize total reward until final round 𝑇
when 𝑥∗ is reached:

𝑅∗ = 𝐄 𝑡=0
𝑇 𝑟𝑡

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

+ other notions:
• long-term average reward (part 2?)
• total reward up to fixed horizon
• …

+ we will assume that
𝑋 and 𝐴 are finite

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY
DISTRIBUTIONS

DEFINING OPTIMALITY

Optimal policy 𝝅∗: a policy that maximizes

𝐄𝜋 𝑅𝛾 = 𝐄𝜋

𝑡=0

∞

𝛾𝑡𝑟𝑡

DEFINING OPTIMALITY

Optimal policy 𝝅∗: a policy that maximizes

𝐄𝜋 𝑅𝛾 = 𝐄𝜋

𝑡=0

∞

𝛾𝑡𝑟𝑡

Theorem
There exists a deterministic optimal policy 𝜋∗ such that

𝜋∗ 𝑥1, 𝑎1, … , 𝑥𝑡 = 𝜋∗ 𝑥𝑡

DEFINING OPTIMALITY

Optimal policy 𝝅∗: a policy that maximizes

𝐄𝜋 𝑅𝛾 = 𝐄𝜋

𝑡=0

∞

𝛾𝑡𝑟𝑡

Theorem
There exists a deterministic optimal policy 𝜋∗ such that

𝜋∗ 𝑥1, 𝑎1, … , 𝑥𝑡 = 𝜋∗ 𝑥𝑡

Consequence: it’s enough to study stationary policies
𝜋: 𝑥 ↦ 𝑎

DEFINING OPTIMALITY

Theorem
There exists a deterministic optimal policy 𝜋∗ such that

𝜋∗ 𝑥1, 𝑎1, … , 𝑥𝑡 = 𝜋∗ 𝑥𝑡

Consequence: it’s enough to study stationary policies
𝜋: 𝑥 ↦ 𝑎

Intuitive “proof”: Future transitions 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡 do
not depend on the previous states 𝑥1, 𝑥2, …

=“Markov property”

DEFINING OPTIMALITY

Theorem
There exists a deterministic optimal policy 𝜋∗ such that

𝜋∗ 𝑥1, 𝑎1, … , 𝑥𝑡 = 𝜋∗ 𝑥𝑡

Consequence: it’s enough to study stationary policies
𝜋: 𝑥 ↦ 𝑎

Intuitive “proof”: Future transitions 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡 do
not depend on the previous states 𝑥1, 𝑥2, …

=“Markov property”

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

VALUE FUNCTIONS

Value function: evaluates policy 𝜋 starting from state 𝑥:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥

VALUE FUNCTIONS

Value function: evaluates policy 𝜋 starting from state 𝑥:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥

Action-value function: evaluates policy 𝜋 starting from
state 𝑥 and action 𝑎:

𝑄𝜋 𝑥, 𝑎 = 𝐄𝜋 𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥, 𝑎0 = 𝑎

VALUE FUNCTIONS

Value function: evaluates policy 𝜋 starting from state 𝑥:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥

Action-value function: evaluates policy 𝜋 starting from
state 𝑥 and action 𝑎:

𝑄𝜋 𝑥, 𝑎 = 𝐄𝜋 𝑡=0
∞ 𝛾𝑡𝑟𝑡 𝑥0 = 𝑥, 𝑎0 = 𝑎

“Optimal policy 𝜋∗

= argmax
𝜋

𝑉𝜋 𝑥0 ”

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 𝜋∗ that satisfies

𝑉𝜋∗ 𝑥 = max
𝜋

𝑉𝜋 𝑥 ∀𝑥

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 𝜋∗ that satisfies

𝑉𝜋∗ 𝑥 = max
𝜋

𝑉𝜋 𝑥 ∀𝑥

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 𝜋∗ that satisfies

𝑉𝜋∗ 𝑥 = max
𝜋

𝑉𝜋 𝑥 ∀𝑥

Optimal policy: a policy 𝜋∗

that satisfies the above

VALUE FUNCTIONS
AND THE OPTIMAL POLICY

Theorem
There exists a policy 𝜋∗ that satisfies

𝑉𝜋∗ 𝑥 = max
𝜋

𝑉𝜋 𝑥 ∀𝑥

The optimal value function:
𝑉∗ = 𝑉𝜋∗

Optimal policy: a policy 𝜋∗

that satisfies the above

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy 𝜋 satisfies the

system of equations (∀𝑥 ∈ 𝑋)
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy 𝜋 satisfies the

system of equations (∀𝑥 ∈ 𝑋)
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

Proof:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝐄𝜋 𝑡=1
∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

= 𝑟 𝑥, 𝜋 𝑥 + 𝛾
𝑦
𝑃 𝑦 𝑥, 𝜋 𝑥 𝐄𝜋 𝑡=1

∞ 𝛾𝑡−1𝑟 𝑥𝑡 , 𝑎𝑡 𝑥1 = 𝑦

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy 𝜋 satisfies the

system of equations (∀𝑥 ∈ 𝑋)
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

Proof:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝐄𝜋 𝑡=1
∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

= 𝑟 𝑥, 𝜋 𝑥 + 𝛾
𝑦
𝑃 𝑦 𝑥, 𝜋 𝑥 𝐄𝜋 𝑡=1

∞ 𝛾𝑡−1𝑟 𝑥𝑡 , 𝑎𝑡 𝑥1 = 𝑦

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy 𝜋 satisfies the

system of equations (∀𝑥 ∈ 𝑋)
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

Proof:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝐄𝜋 𝑡=1
∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

= 𝑟 𝑥, 𝜋 𝑥 + 𝛾
𝑦
𝑃 𝑦 𝑥, 𝜋 𝑥 𝐄𝜋 𝑡=1

∞ 𝛾𝑡−1𝑟 𝑥𝑡 , 𝑎𝑡 𝑥1 = 𝑦

THE BELLMAN EQUATIONS

Theorem
The value function of a stationary policy 𝜋 satisfies the

system of equations (∀𝑥 ∈ 𝑋)
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

Proof:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝐄𝜋 𝑡=1
∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

= 𝑟 𝑥, 𝜋 𝑥 + 𝛾
𝑦
𝑃 𝑦 𝑥, 𝜋 𝑥 𝐄𝜋 𝑡=1

∞ 𝛾𝑡−1𝑟 𝑥𝑡 , 𝑎𝑡 𝑥1 = 𝑦

𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾
𝑦
𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋(𝑦)

THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

𝑉∗ 𝑥 = max
𝑎

𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE BELLMAN OPTIMALITY EQUATIONS

Theorem
The optimal value function satisfies the system of equations

𝑉∗ 𝑥 = max
𝑎

𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

Theorem
An optimal policy 𝜋∗ satisfies

𝜋∗ 𝑥 ∈ argmax
𝑎

𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

𝑄∗ 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 max
𝑏

𝑄∗ 𝑦, 𝑏

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

𝑄∗ 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 max
𝑏

𝑄∗ 𝑦, 𝑏

Theorem
An optimal policy 𝜋∗ satisfies
𝜋∗ 𝑥 ∈ argmax

𝑎
𝑄∗ 𝑥, 𝑎

OPTIMAL ACTION-VALUE FUNCTIONS

Theorem
The optimal action-value function satisfies

𝑄∗ 𝑥, 𝑎 = 𝑟 𝑥, 𝑎 + 𝛾

𝑦

𝑃 𝑦 𝑥, 𝑎 max
𝑏

𝑄∗ 𝑦, 𝑏

Theorem
An optimal policy 𝜋∗ satisfies
𝜋∗ 𝑥 ∈ argmax

𝑎
𝑄∗ 𝑥, 𝑎

= greedy with respect to 𝑄∗

SHORT SUMMARY SO FAR

So far, we have characterized
 The value functions of a given policy
 The optimal policy through value functions
 The optimal value functions
 The optimal policy through the optimal value functions

SHORT SUMMARY SO FAR

So far, we have characterized
 The value functions of a given policy
 The optimal policy through value functions
 The optimal value functions
 The optimal policy through the optimal value functions

BUT HOW DO WE FIND THE
OPTIMAL VALUE FUNCTION??

… also, is there a way to clean up this mess? See part 2!

EASY ANSWER FOR FINITE-HORIZON PROBLEMS

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

DYNAMIC PROGRAMMING

Dynamic programming
=

computing value functions
through repeated use of the

“Bellman operators”

THE BELLMAN OPERATOR

Bellman operator 𝑇𝜋:
maps a function 𝑉 ∈ ℝ𝑋to another function 𝑇𝜋𝑉 ∈ ℝ𝑋:

𝑇𝜋𝑉 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉(𝑦)

THE BELLMAN OPERATOR

Bellman operator 𝑇𝜋:
maps a function 𝑉 ∈ ℝ𝑋to another function 𝑇𝜋𝑉 ∈ ℝ𝑋:

𝑇𝜋𝑉 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉(𝑦)

r.h.s. of BE

THE BELLMAN OPERATOR

Bellman operator 𝑇𝜋:
maps a function 𝑉 ∈ ℝ𝑋to another function 𝑇𝜋𝑉 ∈ ℝ𝑋:

𝑇𝜋𝑉 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉(𝑦)

r.h.s. of BE

The Bellman Equations:
𝑉𝜋 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉𝜋 𝑦

THE BELLMAN OPERATOR

Bellman operator 𝑇𝜋:
maps a function 𝑉 ∈ ℝ𝑋to another function 𝑇𝜋𝑉 ∈ ℝ𝑋:

𝑇𝜋𝑉 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉(𝑦)

r.h.s. of BE

The Bellman Equations:
𝑉𝜋 = 𝑇𝜋𝑉𝜋

THE BELLMAN OPERATOR

Bellman operator 𝑇𝜋:
maps a function 𝑉 ∈ ℝ𝑋to another function 𝑇𝜋𝑉 ∈ ℝ𝑋:

𝑇𝜋𝑉 𝑥 = 𝑟 𝑥, 𝜋 𝑥 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝜋 𝑥 𝑉(𝑦)

r.h.s. of BE

The Bellman Equations:
𝑉𝜋 = 𝑇𝜋𝑉𝜋

𝑉𝜋 is the fixed point of 𝑇𝜋

Idea: repeated application of 𝑇𝜋 on any
function 𝑉0 should converge to 𝑉𝜋…

POLICY EVALUATION USING
THE BELLMAN OPERATOR

Idea: repeated application of 𝑇𝜋 on any
function 𝑉0 should converge to 𝑉𝜋…

POLICY EVALUATION USING
THE BELLMAN OPERATOR

…and it works!!

Power iteration
Input: arbitrary 𝑉0: 𝑋 → 𝐑 and 𝜋
For 𝑘 = 1,2, … , compute

𝑉𝑘+1 = 𝑇𝜋𝑉𝑘

Idea: repeated application of 𝑇𝜋 on any
function 𝑉0 should converge to 𝑉𝜋…

POLICY EVALUATION USING
THE BELLMAN OPERATOR

…and it works!!

Power iteration
Input: arbitrary 𝑉0: 𝑋 → 𝐑 and 𝜋
For 𝑘 = 1,2, … , compute

𝑉𝑘+1 = 𝑇𝜋𝑉𝑘

Theorem: lim
𝑘→∞

𝑉𝑘 = 𝑉𝜋

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

=

𝑡=0

𝑘

𝛾𝑃𝜋 𝑘𝑟

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

=

𝑡=0

𝑘

𝛾𝑃𝜋 𝑘𝑟

= 𝐼 − 𝛾𝑃𝜋 −1 ⋅ 𝐼 − 𝛾𝑃𝜋 𝑘 𝑟

Geometric sum!
(von Neumann series)

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

=

𝑡=0

𝑘

𝛾𝑃𝜋 𝑘𝑟

= 𝐼 − 𝛾𝑃𝜋 −1 ⋅ 𝐼 − 𝛾𝑃𝜋 𝑘 𝑟
→ 𝐼 − 𝛾𝑃𝜋 −1𝑟 𝑘 → ∞

Geometric sum!
(von Neumann series)

𝛾𝑃𝜋 𝑘 → 0

CONVERGENCE OF POWER ITERATION:
PROOF SKETCH

 Power iteration can be written as the linear recursion
𝑉𝑘+1 = 𝑟 + 𝛾𝑃𝜋𝑉𝑘 = 𝑟 + 𝛾𝑃𝜋 𝑟 + 𝛾𝑃𝜋𝑉𝑘−1

= 𝑟 + 𝛾𝑃𝜋𝑟 + 𝛾𝑃𝜋 2𝑟 +⋯+ 𝛾𝑃𝜋 𝑘𝑟

=

𝑡=0

𝑘

𝛾𝑃𝜋 𝑘𝑟

= 𝐼 − 𝛾𝑃𝜋 −1 ⋅ 𝐼 − 𝛾𝑃𝜋 𝑘 𝑟
→ 𝐼 − 𝛾𝑃𝜋 −1𝑟 𝑘 → ∞

 The value function 𝑉𝜋 satisfies
𝑉𝜋 = 𝑟 + 𝛾𝑃𝜋𝑉𝜋 ⇔ 𝑉𝜋 = 𝐼 − 𝛾𝑃𝜋 −1𝑟

Geometric sum!
(von Neumann series)

𝛾𝑃𝜋 𝑘 → 0

POWER ITERATION IN ACTION

Gridworld MDP

POWER ITERATION IN ACTION

Gridworld MDP

• State: location on the grid
• Actions: try to move in one of 8 directions or stay put
• Transition probabilities:

• move successfully w.p. 𝑝 = 0.5
• otherwise move in neighboring direction

POWER ITERATION IN ACTION

Gridworld MDP

Reward: +100 Reward: +500

• State: location on the grid
• Actions: try to move in one of 8 directions or stay put
• Transition probabilities:

• move successfully w.p. 𝑝 = 0.5
• otherwise move in neighboring direction

POWER ITERATION IN ACTION

Uniform policy:

𝜋 𝑎 𝑥 =
1

9
for all actions 𝑎 ∈ {1,2, … , 9}

POWER ITERATION IN ACTION

Uniform policy:

𝜋 𝑎 𝑥 =
1

9
for all actions 𝑎 ∈ {1,2, … , 9}

POWER ITERATION IN ACTION

Uniform policy:

𝜋 𝑎 𝑥 =
1

9
for all actions 𝑎 ∈ {1,2, … , 9}

POWER ITERATION IN ACTION

Uniform policy:

𝜋 𝑎 𝑥 =
1

9
for all actions 𝑎 ∈ {1,2, … , 9}

POWER ITERATION IN ACTION

Uniform policy:

𝜋 𝑎 𝑥 =
1

9
for all actions 𝑎 ∈ {1,2, … , 9}

POWER ITERATION IN ACTION

“Upwards” policy:
𝜋 up 𝑥 = 1

POWER ITERATION IN ACTION

“Upwards” policy:
𝜋 up 𝑥 = 1

POWER ITERATION IN ACTION

“Upwards” policy:
𝜋 up 𝑥 = 1

POWER ITERATION IN ACTION

“Upwards” policy:
𝜋 up 𝑥 = 1

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator 𝑇∗:
maps a function 𝑉 ∈ ℝ𝑋 to another function 𝑇∗𝑉 ∈ ℝ𝑋:

𝑇∗𝑉 𝑥 = max
𝑎

{𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉(𝑦)}

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator 𝑇∗:
maps a function 𝑉 ∈ ℝ𝑋 to another function 𝑇∗𝑉 ∈ ℝ𝑋:

𝑇∗𝑉 𝑥 = max
𝑎

{𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉(𝑦)}

r.h.s. of BOE

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator 𝑇∗:
maps a function 𝑉 ∈ ℝ𝑋 to another function 𝑇∗𝑉 ∈ ℝ𝑋:

𝑇∗𝑉 𝑥 = max
𝑎

{𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉(𝑦)}

r.h.s. of BOE

The Bellman Optimality Equations:
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE BELLMAN OPTIMALITY OPERATOR

Bellman optimality operator 𝑇∗:
maps a function 𝑉 ∈ ℝ𝑋 to another function 𝑇∗𝑉 ∈ ℝ𝑋:

𝑇∗𝑉 𝑥 = max
𝑎

{𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉(𝑦)}

r.h.s. of BOE

The Bellman Optimality Equations:
𝑉∗ = 𝑇∗𝑉∗

𝑉∗ is the fixed point of 𝑇∗

VALUE ITERATION

Idea: repeated application of 𝑇∗ on any
function 𝑉0 should converge to 𝑉∗…

…and it works!!

VALUE ITERATION

Idea: repeated application of 𝑇∗ on any
function 𝑉0 should converge to 𝑉∗…

…and it works!!

Value iteration
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑘 = 1,2, … , compute

𝑉𝑘+1 = 𝑇∗𝑉𝑘

VALUE ITERATION

Idea: repeated application of 𝑇∗ on any
function 𝑉0 should converge to 𝑉∗…

…and it works!!

Value iteration
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑘 = 1,2, … , compute

𝑉𝑘+1 = 𝑇∗𝑉𝑘

Theorem: lim
𝑘→∞

𝑉𝑘 = 𝑉∗

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

 thus
lim
𝑘→∞

𝑉𝑘+1 − 𝑉∗
∞ = 0

VALUE ITERATION IN ACTION

Gridworld MDP

Reward: +100 Reward: +500

• State: location on the grid
• Actions: try to move in one of 8 directions or stay put
• Transition probabilities:

• move successfully w.p. 𝑝 = 0.5
• otherwise move in neighboring direction

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

VALUE ITERATION IN ACTION

POLICY ITERATION

Greedy policy with respect to 𝑉:
𝐺𝑉 𝑥 = argmax

𝑎
𝑟 𝑥, 𝑎 + 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉 𝑥

POLICY ITERATION

Greedy policy with respect to 𝑉:
𝐺𝑉 𝑥 = argmax

𝑎
𝑟 𝑥, 𝑎 + 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉 𝑥

Recall: 𝜋∗ = 𝐺𝑉∗

POLICY ITERATION

Greedy policy with respect to 𝑉:
𝐺𝑉 𝑥 = argmax

𝑎
𝑟 𝑥, 𝑎 + 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉 𝑥

Recall: 𝜋∗ = 𝐺𝑉∗

Policy Iteration
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑘 = 0,1, … , compute
𝜋𝑘 = 𝐺 𝑉𝑘 , 𝑉𝑘+1 = 𝑉𝜋𝑘

Policy Iteration
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑘 = 0,1, … , compute
𝜋𝑘 = 𝐺 𝑉𝑘 , 𝑉𝑘+1 = 𝑉𝜋𝑘

POLICY ITERATION

Greedy policy with respect to 𝑉:
𝐺𝑉 𝑥 = argmax

𝑎
𝑟 𝑥, 𝑎 + 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉 𝑥

Recall: 𝜋∗ = 𝐺𝑉∗

Theorem: lim
𝑘→∞

𝑉𝑘 = 𝑉∗

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

 thus
lim
𝑘→∞

𝑉𝑘+1 − 𝑉∗
∞ = 0

THE CONVERGENCE OF VALUE ITERATION:
PROOF SKETCH

Key idea: 𝑇∗ is a contraction
 for any two functions 𝑉 and 𝑉′, we have

𝑇∗𝑉 − 𝑇∗𝑉′
∞ ≤ 𝛾 𝑉 − 𝑉′

∞

 repeated application gives
𝑉𝑘+1 − 𝑉∗

∞ = 𝑇∗𝑉𝑘 − 𝑇∗𝑉∗
∞

≤ 𝛾 𝑉𝑘 − 𝑉∗
∞

≤ 𝛾2 𝑉𝑘−1 − 𝑉∗
∞

≤ ⋯ ≤ 𝛾𝑘 𝑉0 − 𝑉∗
∞

 thus
lim
𝑘→∞

𝑉𝑘+1 − 𝑉∗
∞ = 0

Just replace 𝑇∗ with the
operator

𝐵∗: 𝑉 ↦ 𝑇𝐺 𝑉 ∞

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

𝑉𝑘

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺𝑉𝑘

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

Policy iteration:

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺𝑉𝑘

evaluate policy
𝑉𝑘+1 = 𝑉𝜋𝑘

Policy iteration:

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺𝑉𝑘

evaluate policy
𝑉𝑘+1 = 𝑉𝜋𝑘

Approximate policy iteration:

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy iteration:

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺𝑉𝑘

evaluate policy
𝑉𝑘+1 = 𝑉𝜋𝑘

Approximate policy iteration:

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Fundamental RL tasks:
• Policy evaluation

• Policy improvement

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺 𝑉𝑘

evaluate policy
𝑉𝑘+1 = 𝑉𝜋𝑘

Approximate policy iteration:

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy iteration:Fundamental RL tasks:
• Policy evaluation

• Policy improvement

Challenges in RL:
• Unknown transition and reward

functions ⇒ have to learn from
sample access only

• State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in

memory

FROM DYNAMIC PROGRAMMING TO
VALUE-BASED REINFORCEMENT LEARNING

𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 = 𝐺 𝑉𝑘

evaluate policy
𝑉𝑘+1 = 𝑉𝜋𝑘

Approximate policy iteration:

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy iteration:Fundamental RL tasks:
• Policy evaluation

• Policy improvement

Challenges in RL:
• Unknown transition and reward

functions ⇒ have to learn from
sample access only

• State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in

memory

LEVELS OF SAMPLE ACCESS

Unknown transition and reward functions
⇒ have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Full knowledge of 𝑃
⇒ Planning (not RL)

Unknown transition and reward functions
⇒ have to learn from sample access only

LEVELS OF SAMPLE ACCESS

Full knowledge of 𝑃
⇒ Planning (not RL)

Unknown transition and reward functions
⇒ have to learn from sample access only

Generative model:
Full sample access to 𝑃(⋅ |𝑥, 𝑎) for any (𝑥, 𝑎)

LEVELS OF SAMPLE ACCESS

Full knowledge of 𝑃
⇒ Planning (not RL)

Unknown transition and reward functions
⇒ have to learn from sample access only

Generative model:
Full sample access to 𝑃(⋅ |𝑥, 𝑎) for any (𝑥, 𝑎)

Samples from full trajectories
+ reset action or save states

LEVELS OF SAMPLE ACCESS

Full knowledge of 𝑃
⇒ Planning (not RL)

Unknown transition and reward functions
⇒ have to learn from sample access only

Generative model:
Full sample access to 𝑃(⋅ |𝑥, 𝑎) for any (𝑥, 𝑎)

Samples from full trajectories
+ reset action or save states

Samples from a single trajectory
⇒ online RL

LEVELS OF SAMPLE ACCESS

Full knowledge of 𝑃
⇒ Planning (not RL)

Unknown transition and reward functions
⇒ have to learn from sample access only

Generative model:
Full sample access to 𝑃(⋅ |𝑥, 𝑎) for any (𝑥, 𝑎)

Samples from full trajectories
+ reset action or save states

Samples from a single trajectory
⇒ online RL

State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate 𝑉∗ and/or 𝜋∗ in a
computationally tractable way!

State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate 𝑉∗ and/or 𝜋∗ in a
computationally tractable way!

Approximating 𝑉∗:
linear function approximation
 Define a set of 𝑑 features:

𝜙𝑖: 𝑋 → 𝐑

 Parametrize value functions as
𝑉𝜃 𝑥 = 𝜃⊤𝜙 𝑥

 Learning 𝑉∗ ⇔ Learning a good 𝜃∗
𝑉𝜃∗ ≈ 𝑉∗

State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate 𝑉∗ and/or 𝜋∗ in a
computationally tractable way!

Approximating 𝑉∗:
linear function approximation
 Define a set of 𝑑 features:

𝜙𝑖: 𝑋 → 𝐑

 Parametrize value functions as
𝑉𝜃 𝑥 = 𝜃⊤𝜙 𝑥

 Learning 𝑉∗ ⇔ Learning a good 𝜃∗
𝑉𝜃∗ ≈ 𝑉∗

Approximating 𝜋∗:
parametrized policies

 Define a set of 𝑑 features:
𝜙𝑖: 𝑋 × 𝐴 → 𝐑

 Parametrize (stochastic) policies as
𝜋𝜃 𝑎 𝑥 ∝ exp 𝜃⊤𝜙 𝑥

 Learning 𝜋∗ ⇔ Learning a good 𝜃∗
𝜋𝜃∗ ≈ 𝜋∗

State/action space can be large
⇒𝑉∗ and 𝜋∗ cannot be stored in memory

DEALING WITH LARGE STATE SPACES

Idea: approximate 𝑉∗ and/or 𝜋∗ in a
computationally tractable way!

Approximating 𝑉∗:
linear function approximation
 Define a set of 𝑑 features:

𝜙𝑖: 𝑋 → 𝐑

 Parametrize value functions as
𝑉𝜃 𝑥 = 𝜃⊤𝜙 𝑥

 Learning 𝑉∗ ⇔ Learning a good 𝜃∗
𝑉𝜃∗ ≈ 𝑉∗

Approximating 𝜋∗:
parametrized policies

 Define a set of 𝑑 features:
𝜙𝑖: 𝑋 × 𝐴 → 𝐑

 Parametrize (stochastic) policies as
𝜋𝜃 𝑎 𝑥 ∝ exp 𝜃⊤𝜙 𝑥

 Learning 𝜋∗ ⇔ Learning a good 𝜃∗
𝜋𝜃∗ ≈ 𝜋∗

FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

FEATURE MAP EXAMPLE

“coarse coding”
≈

indicator features
𝜙𝑖 𝑥 = 𝟏 𝑥 ∈ 𝑋𝑖

“PROST” FEATURES FOR ATARI GAMES

High-dimensional
observations:
192×160 pixels

“PROST” FEATURES FOR ATARI GAMES
High-dimensional
observations:
192×160 pixels

“PROST” FEATURES FOR ATARI GAMES
High-dimensional
observations:
192×160 pixels

Low-dimensional
observations:
14×16 patches

METHODS FOR
POLICY EVALUATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

policy evaluation

A GENTLE START: MONTE CARLO

Observe:
Policy evaluation = estimating 𝑉𝜋:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

A GENTLE START: MONTE CARLO

Observe:
Policy evaluation = estimating 𝑉𝜋:
𝑉𝜋 𝑥 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡 𝑥0 = 𝑥

Idea:
approximate 𝐄𝜋[⋅] by sample averages!

 Simulate 𝑁 trajectories using policy 𝜋
 For every state 𝑥 that appears in the trajectories, let

 𝑉𝑁(𝑥) = avg 𝑅1:𝑁 𝑥

A GENTLE START: MONTE CARLO

Idea:
approximate 𝐄𝜋[⋅] by sample averages!

 Simulate 𝑁 trajectories using policy 𝜋
 For every state 𝑥 that appears in the trajectories, let

 𝑉𝑁(𝑥) = avg 𝑅1:𝑁 𝑥

A GENTLE START: MONTE CARLO

Idea:
approximate 𝐄𝜋[⋅] by sample averages!

 Simulate 𝑁 trajectories using policy 𝜋
 For every state 𝑥 that appears in the trajectories, let

 𝑉𝑁(𝑥) = avg 𝑅1:𝑁 𝑥

Collection of discounted
returns 𝑡=0

𝑇′ 𝛾𝑡𝑟𝑡 after first
visit to 𝑥

A GENTLE START: MONTE CARLO

Idea:
approximate 𝐄𝜋[⋅] by sample averages!

 Simulate 𝑁 trajectories using policy 𝜋
 For every state 𝑥 that appears in the trajectories, let

 𝑉𝑁(𝑥) = avg 𝑅1:𝑁 𝑥

Collection of discounted
returns 𝑡=0

𝑇′ 𝛾𝑡𝑟𝑡 after first
visit to 𝑥

Average of i.i.d.
random variables:

lim
𝑁→∞

 𝑉𝑁 = 𝑉𝜋

Monte Carlo policy evaluation
Input:
𝑁 trajectories ∼ 𝜋, feature map 𝜙: 𝑋 → ℝ𝑑

Output:
 𝑉𝑁 = arg min

𝜃∈ℝ𝑑
𝐄𝑥 𝜃⊤𝜙 𝑥 − 𝑅1:𝑁 𝑥

2

MONTE CARLO WITH FEATURES

MONTE CARLO WITH FEATURES

Monte Carlo policy evaluation
Input:
𝑁 trajectories ∼ 𝜋, feature map 𝜙: 𝑋 → ℝ𝑑

Output:
 𝑉𝑁 = arg min

𝜃∈ℝ𝑑
𝐄𝑥 𝜃⊤𝜙 𝑥 − 𝑅1:𝑁 𝑥

2

Least-squares fit of
discounted returns

PROPERTIES OF MONTE CARLO

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

PROPERTIES OF MONTE CARLO

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

 Doesn’t make use of the Bellman equations 

A BETTER OBJECTIVE?

Idea: construct an objective that uses
the Bellman equations

𝑉𝜋 ≈ 𝑇𝜋𝑉𝜋

A BETTER OBJECTIVE?

Idea: construct an objective that uses
the Bellman equations

𝑉𝜋 ≈ 𝑇𝜋𝑉𝜋

The Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2

TEMPORAL DIFFERENCE LEARNING

Idea: use stochastic approximation to
reduce instantaneous Bellman error

Δ𝑡 = 𝑇𝜋 𝑉𝑡 𝑥𝑡 − 𝑉𝑡 𝑥𝑡
2

TEMPORAL DIFFERENCE LEARNING

Idea: use stochastic approximation to
reduce instantaneous Bellman error

Δ𝑡 = 𝑇𝜋 𝑉𝑡 𝑥𝑡 − 𝑉𝑡 𝑥𝑡
2

TD(0)
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑉𝑡 𝑥𝑡+1 − 𝑉𝑡 𝑥𝑡
 𝑉𝑡+1 𝑥𝑡 = 𝑉𝑡 𝑥𝑡 + 𝛼𝑡𝛿𝑡

TEMPORAL DIFFERENCE LEARNING

Converges if step-sizes satisfy
 𝑡=0
∞ 𝛼𝑡 = ∞ and 𝑡=0

∞ 𝛼𝑡
2 < ∞

(e.g., 𝛼𝑡 = 𝑐/𝑡 does the job)

TD(0)
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑉𝑡 𝑥𝑡+1 − 𝑉𝑡 𝑥𝑡
 𝑉𝑡+1 𝑥𝑡 = 𝑉𝑡 𝑥𝑡 + 𝛼𝑡𝛿𝑡

TD(0)
Input: arbitrary function 𝑉0: 𝑋 → 𝐑
For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑉𝑡 𝑥𝑡+1 − 𝑉𝑡 𝑥𝑡
 𝑉𝑡+1 𝑥𝑡 = 𝑉𝑡 𝑥𝑡 + 𝛼𝑡𝛿𝑡

TEMPORAL DIFFERENCE LEARNING

Converges if step-sizes satisfy
 𝑡=0
∞ 𝛼𝑡 = ∞ and 𝑡=0

∞ 𝛼𝑡
2 < ∞

(e.g., 𝛼𝑡 = 𝑐/𝑡 does the job) In equilibrium,
𝐄 𝑟𝑡 + 𝛾 𝑉𝑡 𝑥𝑡+1 − 𝑉𝑡 𝑥𝑡 = 0

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let 𝜙:𝑋 → 𝐑𝑑 be a feature vector

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let 𝜙:𝑋 → 𝐑𝑑 be a feature vector

Approximating 𝑉𝜋(𝑥) ≈ 𝜃⊤𝜙(𝑥) by TD(0):

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾𝜃𝑡
⊤𝜙 𝑥𝑡+1 − 𝜃𝑡

⊤𝜙 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙 𝑥𝑡

TD(0) WITH
LINEAR FUNCTION APPROXIMATION

Let 𝜙:𝑋 → 𝐑𝑑 be a feature vector

Approximating 𝑉𝜋(𝑥) ≈ 𝜃⊤𝜙(𝑥) by TD(0):

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,

𝛿𝑡 = 𝑟𝑡 + 𝛾𝜃𝑡
⊤𝜙 𝑥𝑡+1 − 𝜃𝑡

⊤𝜙 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝜙 𝑥𝑡

This still converges to 𝑉𝜋!!!
OK, well, somewhere nearby…

TD(0) WITH
NONLINEAR FUNCTION APPROXIMATION

Let 𝑉𝜃: 𝑋 → 𝑅 be a parametric class of
functions (e.g., deep neural network)

Approximating 𝑉𝜋(𝑥) ≈ 𝑉𝜃(𝑥) by TD(0):

TD(0) with general FA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃𝑡 𝑥𝑡+1 − 𝑉𝜃𝑡 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑉𝜃𝑡 𝑥𝑡

TD(0) WITH
NONLINEAR FUNCTION APPROXIMATION

Let 𝑉𝜃: 𝑋 → 𝑅 be a parametric class of
functions (e.g., deep neural network)

Approximating 𝑉𝜋(𝑥) ≈ 𝑉𝜃(𝑥) by TD(0):

TD(0) with general FA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃𝑡 𝑥𝑡+1 − 𝑉𝜃𝑡 𝑥𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑉𝜃𝑡 𝑥𝑡

Not much is known about
convergence 

PROPERTIES OF TD(0)

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

 Based on the concept of Bellman error 

PROPERTIES OF TD(0)

 Value estimates converge to true values 

 Doesn’t need prior knowledge of 𝑃 or 𝑟

 Based on the concept of Bellman error 

= “bootstrapping”

WHERE DOES TD(0) CONVERGE TO?

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 𝜃 = 𝑟𝑡 + 𝛾𝜃⊤𝜙 𝑥𝑡+1 − 𝜃⊤𝜙 𝑥𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡 𝜃𝑡 𝜙 𝑥𝑡

WHERE DOES TD(0) CONVERGE TO?

In the limit, TD(0) finds a 𝜃∗ such that
𝐄 𝛿𝑡 𝜃

∗ 𝜙 𝑥𝑡 = 0

TD(0) with LFA
Input: arbitrary param. vector 𝜃0 ∈ 𝐑𝑑

For 𝑡 = 0,1, … ,
𝛿𝑡 𝜃 = 𝑟𝑡 + 𝛾𝜃⊤𝜙 𝑥𝑡+1 − 𝜃⊤𝜙 𝑥𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡 𝜃𝑡 𝜙 𝑥𝑡

WHERE DOES TD(0) CONVERGE TO?

Idea: given a finite trajectory, approximate
the TD fixed point by solving

𝐄 𝛿𝑡 𝜃 𝜙 𝑥𝑡 ≈
1

𝑇

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
1

𝑇

WHERE DOES TD(0) CONVERGE TO?

Idea: given a finite trajectory, approximate
the TD fixed point by solving

𝐄 𝛿𝑡 𝜃 𝜙 𝑥𝑡 ≈
1

𝑇

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
1

𝑇

Equivalently:
1

𝑇

𝑡=1

𝑇

𝜙 𝑥𝑡 𝜙 𝑥𝑡 − 𝛾𝜙 𝑥𝑡+1
⊤
𝜃 =

1

𝑇

𝑡=1

𝑇

𝑟𝑡𝜙 𝑥𝑡

WHERE DOES TD(0) CONVERGE TO?

Idea: given a finite trajectory, approximate
the TD fixed point by solving

𝐄 𝛿𝑡 𝜃 𝜙 𝑥𝑡 ≈
1

𝑇

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
1

𝑇

Equivalently:
1

𝑇

𝑡=1

𝑇

𝜙 𝑥𝑡 𝜙 𝑥𝑡 − 𝛾𝜙 𝑥𝑡+1
⊤
𝜃 =

1

𝑇

𝑡=1

𝑇

𝑟𝑡𝜙 𝑥𝑡

This is a linear system
𝐴𝑇𝜃 = 𝑏𝑇

Solution: 𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

𝐴𝑇 𝑏𝑇

WHERE DOES TD(0) CONVERGE TO?

Idea: given a finite trajectory, approximate
the TD fixed point by solving

𝐄 𝛿𝑡 𝜃 𝜙 𝑥𝑡 ≈
1

𝑇

𝑡=1

𝑇

𝛿𝑡 𝜃 𝜙 𝑥𝑡 = 0
1

𝑇

Equivalently:
1

𝑇

𝑡=1

𝑇

𝜙 𝑥𝑡 𝜙 𝑥𝑡 − 𝛾𝜙 𝑥𝑡+1
⊤
𝜃 =

1

𝑇

𝑡=1

𝑇

𝑟𝑡𝜙 𝑥𝑡

This is a linear system
𝐴𝑇𝜃 = 𝑏𝑇

Solution: 𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

𝐴𝑇 𝑏𝑇

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

 converges to same 𝜃∗ as TD(0) 

 no need to set step sizes 𝛼𝑡 

 computational complexity: 𝑂 𝑇𝑑2 + 𝑑3 

 𝐴𝑇
−1 may not exist for small 𝑇

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

 converges to same 𝜃∗ as TD(0) 

 no need to set step sizes 𝛼𝑡 

 computational complexity: 𝑂 𝑇𝑑2 + 𝑑3 

 𝐴𝑇
−1 may not exist for small 𝑇

TD(0):
𝑂 𝑇𝑑

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem
In the limit 𝑇 → ∞, LSTD(0) and TD(0) both

minimize the projected Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 Π𝜙 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2

THE CONVERGENCE OF TD(0) AND LSTD(0)

Theorem
In the limit 𝑇 → ∞, LSTD(0) and TD(0) both

minimize the projected Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 Π𝜙 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2

Projection onto span
of features

FROM POLICY EVALUATION
POLICY IMPROVEMENT

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

so far:
policy evaluation

FROM POLICY EVALUATION
POLICY IMPROVEMENT

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

now for the real deal:
policy eval + improvement

OFF-POLICY CONTROL: Q-LEARNING

Idea: Let’s try to
• directly learn about 𝑄∗, and
• improve the policy on the fly!

OFF-POLICY CONTROL: Q-LEARNING

Idea: Let’s try to
• directly learn about 𝑄∗, and
• improve the policy on the fly!

 Compute 𝜀-greedy policy w.r.t. 𝑄𝑡:

𝜋𝑡(𝑥) =
argmax 𝑄𝑡 𝑥, 𝑎 , w. p. 1 − 𝜀
uniform random action, w. p. 𝜀

 Improve estimated 𝑄𝑡+1 by reducing Bellman error

Δ𝑡 = 𝐄 𝑟𝑡 + 𝛾max
𝑎

 𝑄𝑡 𝑥𝑡+1, 𝑎 − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡

2

OFF-POLICY CONTROL: Q-LEARNING

Idea: Let’s try to
• directly learn about 𝑄∗, and
• improve the policy on the fly!

 Compute 𝜀-greedy policy w.r.t. 𝑄𝑡:

𝜋𝑡(𝑥) =
argmax 𝑄𝑡 𝑥, 𝑎 , w. p. 1 − 𝜀
uniform random action, w. p. 𝜀

 Improve estimated 𝑄𝑡+1 by reducing Bellman error

Δ𝑡 = 𝐄 𝑟𝑡 + 𝛾max
𝑎

 𝑄𝑡 𝑥𝑡+1, 𝑎 − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡

2

Off-policy learning:
evaluating 𝜋∗ while

following suboptimal policy!

Q-learning
Input: arbitrary 𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 𝜀-greedy w.r.t. 𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1
• Compute

𝛿𝑡 = 𝑟𝑡 + 𝛾max
𝑎

 𝑄𝑡 𝑥𝑡+1, 𝑎 − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 = 𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

OFF-POLICY CONTROL: Q-LEARNING

ON-POLICY CONTROL: SARSA

SARSA
Input: arbitrary 𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 𝜀-greedy w.r.t. 𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1, 𝑎𝑡+1′

• Compute
𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑄𝑡 𝑥𝑡+1, 𝑎𝑡+1

′ − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 = 𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

ON-POLICY CONTROL: SARSA

SARSA
Input: arbitrary 𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 𝜀-greedy w.r.t. 𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1, 𝑎𝑡+1′

• Compute
𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑄𝑡 𝑥𝑡+1, 𝑎𝑡+1

′ − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 = 𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

𝑎𝑡+1
′ ∼ 𝜀 −greedy:

on-policy

ON-POLICY CONTROL: SARSA

SARSA
Input: arbitrary 𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 𝜀-greedy w.r.t. 𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1, 𝑎𝑡+1′

• Compute
𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑄𝑡 𝑥𝑡+1, 𝑎𝑡+1

′ − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 = 𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

SARSA = 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1′

𝑎𝑡+1
′ ∼ 𝜀 −greedy:

on-policy

ON-POLICY CONTROL: SARSA

SARSA ∼ XARXA
Input: arbitrary 𝑄0: 𝑋 × 𝐴 → 𝐑
For 𝑡 = 0,1, … ,
• Choose action 𝑎𝑡 ∼ 𝜀-greedy w.r.t. 𝑄𝑡
• Observe 𝑟𝑡, 𝑥𝑡+1, 𝑎𝑡+1′

• Compute
𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑄𝑡 𝑥𝑡+1, 𝑎𝑡+1

′ − 𝑄𝑡 𝑥𝑡 , 𝑎𝑡
 𝑄𝑡+1 𝑥𝑡 , 𝑎𝑡 = 𝑄𝑡 𝑥𝑡 , 𝑎𝑡 + 𝛼𝑡𝛿𝑡

SARSA = 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑎𝑡+1′

𝑎𝑡+1
′ ∼ 𝜀 −greedy:

on-policy

Q-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

Q-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

Q-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically

Q-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically
 Proposed fixes: gradient TD algorithms, emphatic TD algorithms,

double Q-learning, soft Q-learning, G-learning,…

Q-LEARNING VS. SARSA
WITH FUNCTION APPROXIMATION

Both algorithms can be adapted to linear and
non-linear FA by using the update rule

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝛿𝑡𝛻𝜃𝑄𝜃(𝑥𝑡, 𝑎𝑡)

 SARSA guarantees bounded error and tends to
behave well in practice (may not find optimal policy though)

 Q-learning may diverge catastrophically
 Proposed fixes: gradient TD algorithms, emphatic TD algorithms,

double Q-learning, soft Q-learning, G-learning,…
 Practical solution: tune it until it works

DIVERGENCE OF
OFF-POLICY TD LEARNING

The “deadly triad”:
 Function approximation
 Bootstrapping
 Off-policy learning

DIVERGENCE OF
OFF-POLICY TD LEARNING

The “deadly triad”:
 Function approximation
 Bootstrapping
 Off-policy learning

BUT
Divergence is typically not too
extreme when behavior policy

is close to evaluation policy
and FA is linear

and now

and now
the moment you all

have been waiting for

and now

DEEP
REINFORCEMENT

LEARNING

the moment you all
have been waiting for

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize 𝑄-function/policy by a deep net

(𝑥, 𝑎)

𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize 𝑄-function/policy by a deep net

(𝑥, 𝑎)

𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥
Hope:

Take advantage of
representation power!

THE PROMISE OF
DEEP REINFORCEMENT LEARNING

Parametrize 𝑄-function/policy by a deep net

(𝑥, 𝑎)

𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥
Hope:

Take advantage of
representation power!

Challenge:
Existing RL methods

difficult to generalize

LEAST-SQUARES TEMPORAL DIFFERENCE
LEARNING (LSTD)

LSTD(0)
Input: trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇

𝜃𝑇 = 𝐴𝑇
−1𝑏𝑇

 𝑉𝑇 = 𝜃𝑇
⊤𝜙

 converges to same 𝜃∗ as TD(0) 

 no need to set step sizes 𝛼𝑡 

 computational complexity: 𝑂 𝑇𝑑2 + 𝑑3 

 𝐴𝑇
−1 may not exist for small 𝑇



Idea not directly applicable to non-
linear function approximation!



LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????

LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????

NO!!
Bellman error involves a double expectation:

𝐿 𝜃 = 𝐄𝑋 ℓ 𝜃; 𝑋, 𝐄𝑌 𝑌 𝑋

can’t get unbiased gradients!

LSTD FOR NON-LINEAR
FUNCTION APPROXIMATION?

Can we optimize Bellman error

𝐿 𝜃 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉𝜃 𝑥 − 𝑉𝜃 𝑥
2

by stochastic gradient descent????

NO!!
Bellman error involves a double expectation:

𝐿 𝜃 = 𝐄𝑋 ℓ 𝜃; 𝑋, 𝐄𝑌 𝑌 𝑋

The infamous
“double sampling”

issue of RL

can’t get unbiased gradients!

TACKLING DOUBLE SAMPLING

•Saddle-point optimization:
min
𝜃

𝐄 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 2 =

•Saddle-point optimization:
min
𝜃

𝐄 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 2 =

min
𝜃

max
𝑧

𝐄 𝑧 𝑋, 𝑌 ⋅ 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 − 𝐄 𝑧2 𝑋, 𝑌

TACKLING DOUBLE SAMPLING

•Saddle-point optimization:
min
𝜃

𝐄 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 2 =

min
𝜃

max
𝑧

𝐄 𝑧 𝑋, 𝑌 ⋅ 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 − 𝐄 𝑧2 𝑋, 𝑌

⇒ “modified Bellman residual” (Antos et al. 2008),
“Gradient TD” methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

TACKLING DOUBLE SAMPLING
No nested

expectation here!

•Saddle-point optimization:
min
𝜃

𝐄 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 2 =

min
𝜃

max
𝑧

𝐄 𝑧 𝑋, 𝑌 ⋅ 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 − 𝐄 𝑧2 𝑋, 𝑌

⇒ “modified Bellman residual” (Antos et al. 2008),
“Gradient TD” methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

•Iterative optimization schemes

TACKLING DOUBLE SAMPLING
No nested

expectation here!

•Saddle-point optimization:
min
𝜃

𝐄 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 2 =

min
𝜃

max
𝑧

𝐄 𝑧 𝑋, 𝑌 ⋅ 𝑓 𝜃; 𝑋, 𝐄 𝑌 𝑋 − 𝐄 𝑧2 𝑋, 𝑌

⇒ “modified Bellman residual” (Antos et al. 2008),
“Gradient TD” methods (Sutton et al. 2009),
SBEED (Dai et al., 2018)

•Iterative optimization schemes

TACKLING DOUBLE SAMPLING
No nested

expectation here!

FITTED POLICY EVALUATION

Idea: compute sequence of value
functions by minimizing

𝐿𝑛 𝑉; 𝑉𝑘 =
1

𝑛

𝑡=1

𝑛

𝑟𝑡 + 𝑉𝑘 𝑥𝑡+1 − 𝑉 𝑥𝑡
2

FITTED POLICY EVALUATION

Idea: compute sequence of value
functions by minimizing

𝐿𝑛 𝑉; 𝑉𝑘 =
1

𝑛

𝑡=1

𝑛

𝑟𝑡 + 𝑉𝑘 𝑥𝑡+1 − 𝑉 𝑥𝑡
2

Target Free variable

This can be finally treated as a
regression problem & solved by SGD!

FITTED POLICY ITERATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘 Fitted policy evaluation

𝜀-Greedy policy update

FITTED POLICY ITERATION

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘 Fitted policy evaluation

𝜀-Greedy policy update

Computing policy needs
model of 𝑃… better use

Q-functions!

Idea: compute sequence of 𝑄-value functions by
minimizing

𝐿𝑛 𝑄; 𝑄𝑘 =
1

𝑛

𝑡=1

𝑛

𝑟𝑡 +max
𝑎

 𝑄𝑘 𝑥𝑡+1, 𝑎 − 𝑄 𝑥𝑡, 𝑎𝑡

2

FITTED VALUE ITERATION

Free variableTarget

FITTED VALUE ITERATION

Fitted value iteration
Input: function space 𝐹, 𝑄0 ∈ 𝐹
For 𝑘 = 0,1, … ,
• 𝜋𝑘 = 𝐺𝜀 𝑄𝑘
• generate trajectory

𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1
𝑛 ∼ 𝜋𝑘

• compute
 𝑄𝑘+1 = argmin

 𝑄∈𝐹
𝐿𝑛 𝑄; 𝑄𝑘

FITTED VALUE ITERATION

Fitted value iteration
Input: function space 𝐹, 𝑄0 ∈ 𝐹
For 𝑘 = 0,1, … ,
• 𝜋𝑘 = 𝐺𝜀 𝑄𝑘
• generate trajectory

𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1
𝑛 ∼ 𝜋𝑘

• compute
 𝑄𝑘+1 = argmin

 𝑄∈𝐹
𝐿𝑛 𝑄; 𝑄𝑘

Computing
policy is trivial!

FITTED VALUE ITERATION

Fitted value iteration
Input: function space 𝐹, 𝑄0 ∈ 𝐹
For 𝑘 = 0,1, … ,
• 𝜋𝑘 = 𝐺𝜀 𝑄𝑘
• generate trajectory

𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1
𝑛 ∼ 𝜋𝑘

• compute
 𝑄𝑘+1 = argmin

 𝑄∈𝐹
𝐿𝑛 𝑄; 𝑄𝑘

Convergence can be guaranteed!
under very technical assumptions…

Computing
policy is trivial!

DEEP Q NETWORKS

Parametrize 𝑄-function by a deep neural net

(𝑥, 𝑎) 𝑄𝜃(𝑥, 𝑎)

DEEP Q NETWORKS

Parametrize 𝑄-function by a deep neural net

(𝑥, 𝑎) 𝑄𝜃(𝑥, 𝑎)

Minimize the loss

𝐄 𝑋,𝐴,𝑅,𝑋′ ∼𝐷 𝑅 + 𝛾max
𝑏

𝑄𝜃𝑘 𝑋′, 𝑏 − 𝑄𝜃 𝑋, 𝐴

2

DEEP Q NETWORKS

Parametrize 𝑄-function by a deep neural net

(𝑥, 𝑎) 𝑄𝜃(𝑥, 𝑎)
+ training tricks:
• Store transitions 𝑥, 𝑎, 𝑟, 𝑥′ in replay buffer 𝐷 to break

dependence on recent samples
• Compute small updates by mini-batch stochastic

gradient descent
• Use an older parameter vector 𝜃𝑘−𝑚 in target to avoid

oscillations
• …

Minimize the loss

𝐄 𝑋,𝐴,𝑅,𝑋′ ∼𝐷 𝑅 + 𝛾max
𝑏

𝑄𝜃𝑘 𝑋′, 𝑏 − 𝑄𝜃 𝑋, 𝐴

2

DEEP Q NETWORKS FOR PLAYING ATARI

Superhuman
performance!!

BUT results very difficult to
reproduce as the system is

very unstable…

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

But first:
some more notation 

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 = 𝜋 𝑥𝑡 , 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥1
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Stationary stochastic policy: mapping from states to
action distributions

𝜋: 𝐴 × 𝑋 → [0,1]
where

𝜋 𝑎 𝑥 = 𝑃 𝑎𝑡 = 𝑎 𝑥𝑡 = 𝑥

Policy: mapping from histories to actions
𝜋: 𝑥1, 𝑎1, 𝑥2, 𝑎2, … , 𝑥𝑡 ↦ 𝑎𝑡

Stationary policy: mapping from states to actions
(no dependence on history or 𝑡)

𝜋: 𝑥 ↦ 𝑎

Let 𝜏 = 𝑥1, 𝑎1, 𝑥2, 𝑎2, … be a trajectory generated by
running 𝜋 in the MDP 𝜏 ∼ (𝜋, 𝑃):
• 𝑎𝑡 ∼ 𝜋 ⋅ |𝑥𝑡
• 𝑥𝑡+1 ∼ 𝑃 ⋅ 𝑥𝑡 , 𝑎𝑡
Expectation under this distribution: 𝐄𝜋 ⋅

POLICIES AND TRAJECTORY
DISTRIBUTIONS

Stationary stochastic policy: mapping from states to
action distributions

𝜋: 𝐴 × 𝑋 → [0,1]
where

𝜋 𝑎 𝑥 = 𝑃 𝑎𝑡 = 𝑎 𝑥𝑡 = 𝑥

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋 𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝑡=0

𝑇 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎)

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is

𝑅𝛾
𝜋 = 𝐄𝜋 𝑡=0

∞ 𝛾𝑡𝑟 𝑥𝑡 , 𝑎𝑡
𝑅𝛾
𝜋 = 𝐄𝜋 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝟏 𝑥𝑡=𝑥,𝑎𝑡=𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎 𝑟(𝑥, 𝑎)

𝑅𝛾
𝜋 = 𝑥,𝑎 𝜇𝜋 𝑥, 𝑎 𝑟(𝑥, 𝑎) = 𝜇𝜋, 𝑟

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is
𝑅𝛾
𝜋 = 𝜇𝜋, 𝑟

𝜇𝜋 = the discounted occupancy measure
induced by policy 𝜋:
𝜇𝜋 𝑥, 𝑎 = 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎

ANOTHER PERSPECTIVE ON
DISCOUNTED REWARDS

Discounted MDPs:
 No terminal state, initial state 𝑥0 ∼ 𝜇0
 Discount factor 𝛾 ∈ 0,1

 GOAL: maximize total discounted reward
𝑅𝛾 = 𝐄 𝑡=0

∞ 𝛾𝑡𝑟𝑡

Observe: the discounted reward of a policy is
𝑅𝛾
𝜋 = 𝜇𝜋, 𝑟

𝜇𝜋 = the discounted occupancy measure
induced by policy 𝜋:
𝜇𝜋 𝑥, 𝑎 = 𝑡=0

∞ 𝛾𝑡𝐏𝜋 𝑥𝑡 = 𝑥, 𝑎𝑡 = 𝑎

A linear optimization
problem?!

TOWARDS A LINEAR-PROGRAM
FORMULATION

Theorem
A function 𝜇 is a discounted occupancy measure of some
(stationary stochastic) policy 𝜋 if and only if it satisfies

𝒂′

𝜇 𝑥′, 𝑎′ = 1 − 𝛾

𝒂′

𝜇0 𝑥′, 𝑎′ + 𝛾

𝑥,𝑎

𝑃 𝑥′ 𝑥, 𝑎 𝜇 𝑥, 𝑎

and 𝑥,𝑎 𝜇(𝑥, 𝑎) = 1/(1 − 𝛾).

TOWARDS A LINEAR-PROGRAM
FORMULATION

Theorem
A function 𝜇 is a discounted occupancy measure of some
(stationary stochastic) policy 𝜋 if and only if it satisfies

𝒂′

𝜇 𝑥′, 𝑎′ = 1 − 𝛾

𝒂′

𝜇0 𝑥′, 𝑎′ + 𝛾

𝑥,𝑎

𝑃 𝑥′ 𝑥, 𝑎 𝜇 𝑥, 𝑎

and 𝑥,𝑎 𝜇(𝑥, 𝑎) = 1/(1 − 𝛾).

Linear constraints!
Define Δ = the set of

occupancy measures 𝜇.

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎

*names are due to tradition

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP ≡ The Bellman opt. equations
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

*names are due to traditionAssuming 𝜇0 > 0

OPTIMIZATION IN MDPS
AS A LINEAR PROGRAM

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP ≡ The Bellman opt. equations
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

*names are due to tradition

A single numerical
objective to optimize!

Assuming 𝜇0 > 0

OPTIMAL SOLUTIONS OF THE LP

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.

OPTIMAL SOLUTIONS OF THE LP

“Proof”:
objective 𝜇, 𝑟 is bounded on nonempty Δ

⇒
there exists optimal solution 𝜇∗ ∈ Δ

⇒
there exists basic solution 𝜇∗ ∈ Δ

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.

OPTIMAL SOLUTIONS OF THE LP

“Proof”:
objective 𝜇, 𝑟 is bounded on nonempty Δ

⇒
there exists optimal solution 𝜇∗ ∈ Δ

⇒
there exists basic solution 𝜇∗ ∈ Δ

Theorem
There exists a basic solution 𝜇∗ ∈ Δ to the dual LP.

A “corner” of Δ

EXTRACTING A POLICY

Question: how do we extract a policy
from a feasible 𝜇 ∈ Δ??

EXTRACTING A POLICY

Question: how do we extract a policy
from a feasible 𝜇 ∈ Δ??

Corollary
Assume that 𝜇0(𝑥) > 0 for all 𝑥 ∈ 𝑋. Then, for any

occupancy measure 𝜇 ∈ Δ, there exists a unique policy 𝜋
such that 𝜇 = 𝜇𝜋, given by

𝜋 𝑎 𝑥 =
𝜇 𝑥, 𝑎

 𝑏 𝜇 𝑥, 𝑏
.

EXTRACTING A POLICY

Question: how do we extract a policy
from a feasible 𝜇 ∈ Δ??

Corollary
Assume that 𝜇0(𝑥) > 0 for all 𝑥 ∈ 𝑋. Then, for any

occupancy measure 𝜇 ∈ Δ, there exists a unique policy 𝜋
such that 𝜇 = 𝜇𝜋, given by

𝜋 𝑎 𝑥 =
𝜇 𝑥, 𝑎

 𝑏 𝜇 𝑥, 𝑏
.

Well-defined since
 𝑏 𝜇(𝑥, 𝑏) > 0 by assumption

EXTRACTING A POLICY

Question: how do we extract a policy
from a feasible 𝜇 ∈ Δ??

Corollary
Assume that 𝜇0(𝑥) > 0 for all 𝑥 ∈ 𝑋. Then, for any

occupancy measure 𝜇 ∈ Δ, there exists a unique policy 𝜋
such that 𝜇 = 𝜇𝜋, given by

𝜋 𝑎 𝑥 =
𝜇 𝑥, 𝑎

 𝑏 𝜇 𝑥, 𝑏
.

Well-defined since
 𝑏 𝜇(𝑥, 𝑏) > 0 by assumption

Basic solutions
⇔

Deterministic policies

LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”
• Needs some strange conditions that DP theory does not

(𝜇0 > 0 for existence results and for optimal policy)
• Temporal aspect is rather abstract

• Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

“Why don’t they teach this in school?!?”
• Needs some strange conditions that DP theory does not

(𝜇0 > 0 for existence results and for optimal policy)
• Temporal aspect is rather abstract

• Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

Advantages
• Defining optimality is very simple

(no value functions, no fixed points, etc.)
• Easily comprehensible with an optimization background

(single numerical objective)
• Powerful tool for developing algorithms

LINEAR PROGRAMMING FOR MDPS

“Why don’t they teach this in school?!?”
• Needs some strange conditions that DP theory does not

(𝜇0 > 0 for existence results and for optimal policy)
• Temporal aspect is rather abstract

• Less intuitive for control theorists and computational
neuroscience folks (classic RL crowd)

Advantages
• Defining optimality is very simple

(no value functions, no fixed points, etc.)
• Easily comprehensible with an optimization background

(single numerical objective)
• Powerful tool for developing algorithms

LINEAR PROGRAMMING FOR MDPS

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

DIRECT POLICY OPTIMIZATION

Idea: derive algorithms by thinking of
𝜇 ∈ Δ as the decision variable!

DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS)
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of
𝜇 ∈ Δ as the decision variable!

DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS)
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of
𝜇 ∈ Δ as the decision variable!

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

• Construct mapping
𝜃 ↦ 𝜋𝜃

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

• Construct mapping
𝜃 ↦ 𝜋𝜃

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

• Construct mapping
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

• Construct mapping
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

• Update parameters by
gradient ascent:
𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝛻𝜃𝜌 𝜃𝑘

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

… and hope for convergence

𝜃∗

• Construct mapping
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

• Update parameters by
gradient ascent:
𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝛻𝜃𝜌 𝜃𝑘

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

POLICY GRADIENT METHODS

Parameter space Θ

𝜃

… and hope for convergence

𝜃∗

How can we estimate
the gradients?

• Construct mapping
𝜃 ↦ 𝜋𝜃

• Define objective function:
𝜌 𝜃 = 𝑅𝛾

𝜋𝜃

• Update parameters by
gradient ascent:
𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝛻𝜃𝜌 𝜃𝑘

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

THE POLICY GRADIENT THEOREM

Theorem

𝛻𝜃𝜌 𝜃 =

𝑥

𝜇𝜃 𝑥

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

THE POLICY GRADIENT THEOREM

Theorem

𝛻𝜃𝜌 𝜃 =

𝑥

𝜇𝜃 𝑥

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 =

𝑥,𝑎

𝜇𝜃 𝑥 𝜋𝜃 𝑎 𝑥 𝛻𝜃 log 𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

Theorem

𝛻𝜃𝜌 𝜃 =

𝑥

𝜇𝜃 𝑥

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

THE POLICY GRADIENT THEOREM

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 = 𝐄 𝑥, 𝑎 ∼𝜇𝜃𝜋𝜃
𝛻𝜃 log 𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

Theorem

𝛻𝜃𝜌 𝜃 =

𝑥

𝜇𝜃 𝑥

𝑎

𝛻𝜃𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

THE POLICY GRADIENT THEOREM

Corollary
Assuming that 𝜋𝜃 𝑎 𝑥 > 0 for all 𝑥, 𝑎,

𝛻𝜃𝜌 𝜃 = 𝐄 𝑥, 𝑎 ∼𝜇𝜃𝜋𝜃
𝛻𝜃 log 𝜋𝜃 𝑎 𝑥 𝑄𝜋𝜃 𝑥, 𝑎

Gradient can be written as an
expectation!!!!

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

Idea: replace expectation by a sample
mean ⇒ stochastic gradient algorithm

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

REINFORCE
Input: arbitrary initial 𝜃0
For 𝑘 = 0,1,…
• Obtain sample trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇 ∼ 𝜋𝜃𝑘
• Estimate 𝑄𝑘 ≈ 𝑄𝜋𝜃𝑘 by Monte Carlo
• Estimate 𝑔𝑘 ≈ 𝛻𝜃𝜌 𝜃𝑘 by the average of

𝑔𝑘,𝑡 = 𝛻𝜃 log 𝜋𝜃𝑘 𝑎𝑡 𝑥𝑡 𝑄𝑘 𝑥𝑡, 𝑎𝑡
• Update 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑔𝑘

Idea: replace expectation by a sample
mean ⇒ stochastic gradient algorithm

REINFORCE: A STOCHASTIC POLICY
GRADIENT ALGORITHM

REINFORCE
Input: arbitrary initial 𝜃0
For 𝑘 = 0,1,…
• Obtain sample trajectory 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 𝑡=1

𝑇 ∼ 𝜋𝜃𝑘
• Estimate 𝑄𝑘 ≈ 𝑄𝜋𝜃𝑘 by Monte Carlo
• Estimate 𝑔𝑘 ≈ 𝛻𝜃𝜌 𝜃𝑘 by the average of

𝑔𝑘,𝑡 = 𝛻𝜃 log 𝜋𝜃𝑘 𝑎𝑡 𝑥𝑡 𝑄𝑘 𝑥𝑡, 𝑎𝑡
• Update 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑔𝑘

Idea: replace expectation by a sample
mean ⇒ stochastic gradient algorithm

𝐄 𝑔𝑘 = 𝛻𝜃𝜌 𝜃𝑘

REINFORCE AS DIRECT POLICY SEARCH

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy gradient update

Monte Carlo evaluation

REINFORCE AS DIRECT POLICY SEARCH

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

Policy gradient update

Monte Carlo evaluation

 direct method: no explicit
approximation of 𝑉𝜋



 converges to local optimum 

 less aggressive updates 

 large variance of 𝑔𝑘 

ACTOR-CRITIC METHODS

 𝑉𝑘 𝜋𝑘

improve policy
𝜋𝑘 ≈ 𝐺 𝑉𝑘

evaluate policy
 𝑉𝑘+1 ≈ 𝑉𝜋𝑘

ACTOR

CRITIC

Typical actor:
policy gradient updates

Critic:
• Monte Carlo ⇒ REINFORCE
• TD(𝜆)
• LSTD(𝜆)
• DQN, …

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

A TYPICAL DEEP RL ARCHITECTURE: A3C

Parametrize policy by a deep neural net

(𝑥, 𝑎) 𝜋𝜃 𝑎 𝑥

+ another neural net to estimate 𝑉𝜋𝜃 and to
estimate 𝑄𝜋𝜃 by “bootstrapped” Monte Carlo

+ asynchronous updates
+ entropy-regularization of the objective

+…

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Issue #1:
Euclidean norm may be
unnatural way to measure
distance between 𝜇𝜃 and 𝜇𝜃𝑡?

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Issue #1:
Euclidean norm may be
unnatural way to measure
distance between 𝜇𝜃 and 𝜇𝜃𝑡?

Issue #2:
Linearizing 𝜌 at 𝜃𝑡 may
lead to instability?

POLICY GRADIENTS: THE FINAL ANSWER?

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Issue #1:
Euclidean norm may be
unnatural way to measure
distance between 𝜇𝜃 and 𝜇𝜃𝑡?

Issue #2:
Linearizing 𝜌 at 𝜃𝑡 may
lead to instability?

+ Issue #3:
Policy gradient estimator
has huge variance 

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

Dual convex program

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 +

1

𝜂
Φ 𝜇

A BETTER APPROACH:
SMOOTHED LINEAR PROGRAMS

Dual convex program

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 +

1

𝜂
Φ 𝜇

Φ: strongly convex function of 𝜇:
• smooth optimum

𝜇∗ = argmax
𝜇

𝜇, 𝑟 +
1
𝜂
Φ 𝜇 =

1

𝜂
∇𝑟Φ

∗(𝜂𝑟)

• regularization effect ⇒ better generalization?

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

BETTER PROXIMAL REGULARIZATION:
MIRROR DESCENT

Policy gradient update

𝜃𝑡+1 = argmax
𝜃

𝜃, 𝛻𝜌 𝜃𝑡 −
1

𝛼𝑡
𝜃 − 𝜃𝑡 2

2

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

Proximal regularization through
Bregman divergence 𝐷 𝜇 𝜇′

(strongly convex in 𝜇)

No need for local
linearization

DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS)
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of
𝜇 ∈ Δ as the decision variable!

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

Closed-form “policy update”:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

RELATIVE ENTROPY POLICY SEARCH
(REPS, PETERS ET AL., 2010)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷 𝜇 𝜇𝑡

𝐷 𝜇 𝜇′ = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇(𝑥,𝑎)

𝜇′(𝑥,𝑎)

Closed-form “policy update”:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

“Value function”
 𝑉𝑡 = ???

THE REPS VALUE FUNCTION

Theorem
The REPS value function 𝑉𝑡 is given as

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥

THE REPS VALUE FUNCTION

“Proof”: Lagrangian duality.

Theorem
The REPS value function 𝑉𝑡 is given as

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥

THE REPS VALUE FUNCTION

“Proof”: Lagrangian duality.

Theorem
The REPS value function 𝑉𝑡 is given as

the minimizer of the loss function
 𝐿 𝑉 = log 𝐄𝑥∼𝜇𝑡 𝑒

𝜂𝑡 𝑇𝜋𝑉 𝑥 −𝑉 𝑥

A natural competitor for the Bellman error

𝐿 𝑉 = 𝐄𝑥∼𝜇 𝑇𝜋𝑉 𝑥 − 𝑉 𝑥
2

???

Stay tuned for “deep REPS” results 

DIRECT POLICY OPTIMIZATION

Examples
 Policy gradient methods
= gradient descent on −𝑅𝛾𝜋

 Relative Entropy Policy Search (REPS)
= mirror descent on −𝑅𝛾𝜋

 Trust-region policy optimization (TRPO)
= mirror descent on (a surrogate of) −𝑅𝛾𝜋

Idea: derive algorithms by thinking of
𝜇 ∈ Δ as the decision variable!

THE REGULARIZED BELLMAN EQUATIONS

The Bellman opt. equations
𝑉∗ 𝑥 = max

𝑎
𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE REGULARIZED BELLMAN EQUATIONS

The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE REGULARIZED BELLMAN EQUATIONS

Used almost exclusively since ∼late 2016
• Better optimization properties:

smooth gradients, less sensitive to errors
• Better exploration:

optimal policy naturally stochastic, no
need for 𝜀 −greedy trick

The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

THE REGULARIZED BELLMAN EQUATIONS

Used almost exclusively since ∼late 2016
• Better optimization properties:

smooth gradients, less sensitive to errors
• Better exploration:

optimal policy naturally stochastic, no
need for 𝜀 −greedy trick

Is there a natural “dual”
explanation?

The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

??? Dual convex program ???

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 −

1

𝜂
Φ 𝜇

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected

by Lagrangian duality with the choice

Φ 𝜇 =

𝑥,𝑎

𝜇 𝑥, 𝑎 log
𝜇 𝑥, 𝑎

 𝑏 𝜇(𝑥, 𝑏)

Φ 𝜇 =

𝑥

𝜇 𝑥

𝑎

𝜋𝜇 𝑎 𝑥 log 𝜋𝜇 𝑎 𝑥

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected

by Lagrangian duality with the choice

Φ 𝜇 =

𝑥,𝑎

𝜇 𝑥, 𝑎 log
𝜇 𝑥, 𝑎

 𝑏 𝜇(𝑥, 𝑏)

Φ 𝜇 =

𝑥

𝜇 𝑥

𝑎

𝜋𝜇 𝑎 𝑥 log 𝜋𝜇 𝑎 𝑥

The conditional entropy
of 𝐴|𝑋 under 𝜇

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Theorem (Neu et al., 2017)
The two formulations are connected

by Lagrangian duality with the choice

Φ 𝜇 =

𝑥,𝑎

𝜇 𝑥, 𝑎 log
𝜇 𝑥, 𝑎

 𝑏 𝜇(𝑥, 𝑏)

Φ 𝜇 =

𝑥

𝜇 𝑥

𝑎

𝜋𝜇 𝑎 𝑥 log 𝜋𝜇 𝑎 𝑥

The conditional entropy
of 𝐴|𝑋 under 𝜇 A convex function of 𝜇!

The regularized Bellman opt. equations
𝑉∗ 𝑥 = softmax

𝑎

𝜂 𝑟 𝑥, 𝑎 + 𝛾 𝑦𝑃 𝑦 𝑥, 𝑎 𝑉∗ 𝑦

DUALITY THEORY FOR
THE REGULARIZED BELLMAN EQUATIONS

Dual convex program

 𝑅𝛾
∗ = max

𝜇∈Δ
𝜇, 𝑟 −

1

𝜂
Φ 𝜇

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

Closed-form policy update:

𝜋𝑡+1 𝑎|𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

MIRROR DESCENT WITH CONDITIONAL
ENTROPY (NEU ET AL., 2017)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

Closed-form policy update:

𝜋𝑡+1 𝑎|𝑥 = 𝜋𝑡 𝑎|𝑥 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value function 𝑉𝑡 = solution to
proximally regularized BOE

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑟 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 = 𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎 𝑥
𝜋𝑡(𝑥,𝑎)

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑄𝑡 − 𝑉𝑡 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

𝐷Φ 𝜇 𝜇𝑡 = 𝑥 𝜇𝑡 𝑥 𝑎 𝜋𝜇 𝑎 𝑥 log
𝜋𝜇(𝑎|𝑥)

𝜋𝑡(𝑥,𝑎)

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Mirror descent update

𝜇𝑡+1 = argmax
𝜇∈Δ

𝜇, 𝑄𝑡 − 𝑉𝑡 −
1

𝜂𝑡
𝐷Φ 𝜇 𝜇𝑡

Dense surrogate for 〈𝜇, 𝑟〉
(works because 𝜇, 𝑟 = 𝜇, 𝑄𝑡 − 𝑉𝑡 when 𝜇 ∈ Δ)

𝐷Φ 𝜇 𝜇𝑡 = 𝑥 𝜇𝑡 𝑥 𝑎 𝜋𝜇 𝑎 𝑥 log
𝜋𝜇(𝑎|𝑥)

𝜋𝑡(𝑥,𝑎)

𝜇𝑡 ≈ 𝜇𝑡+1, but 𝜇𝑡 can be sampled from

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of

Even-Dar, Kakade and Mansour (2006)
⇒

lim
𝑡→∞

〈𝜇𝑡, 𝑟〉 = 〈𝜇∗, 𝑟〉

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

(𝑥, 𝑎)
𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥

+ more tricks:
• Another surrogate for 𝜇
• Truncation of objective
• Constraint vs. penalty
• Mini-batch SGD
• …

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of

Even-Dar, Kakade and Mansour (2006)
⇒

lim
𝑡→∞

〈𝜇𝑡, 𝑟〉 = 〈𝜇∗, 𝑟〉

TRUST-REGION POLICY OPTIMIZATION
(TRPO, SCHULMAN ET AL., 2015)

(𝑥, 𝑎)
𝑄𝜃(𝑥, 𝑎)

𝜋𝜃 𝑎 𝑥

+ more tricks:
• Another surrogate for 𝜇
• Truncation of objective
• Constraint vs. penalty
• Mini-batch SGD
• …

Theorem (Neu et al., 2017)
TRPO is equivalent to the MDP-E algorithm of

Even-Dar, Kakade and Mansour (2006)
⇒

lim
𝑡→∞

〈𝜇𝑡, 𝑟〉 = 〈𝜇∗, 𝑟〉

Literally the most broadly used
deep RL algorithm!

(but reading the original paper
is not recommended…)

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Dual LP
𝑅𝛾
∗ = max

𝜇∈Δ
〈𝜇, 𝑟〉

Primal LP’
𝑅𝛾
∗ = min

𝑉∈ℝ𝑋
𝜇0, 𝑉

s.t. 𝑉 𝑥 ≥ 𝑟 𝑥, 𝑎 + 𝛾 𝑦 𝑃 𝑦 𝑥, 𝑎 𝑉 𝑦 ∀𝑥, 𝑎

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

BEYOND LINEAR PROGRAMMING:
SADDLE-POINT OPTIMIZATION

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

≈ the Lagrangian of the two LPs
⇒

solution exists & optimal policy can
be extracted under same conditions

PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

Policy update:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value update:
 𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑡 𝜇𝑡 − 𝛾𝜇𝑡𝑃

PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

Policy update:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value update:
 𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑡 𝜇𝑡 − 𝛾𝜇𝑡𝑃

Gradient step in primal

Exponentiated gradient
step in dual

PRIMAL-DUAL 𝜋-LEARNING
(WANG ET AL., 2017-)

Bellman saddle point
min
𝑉

max
𝜇∈Δ

𝜇, 𝑟 + 𝛾𝑃𝑉 − 𝑉 + 1 − 𝛾 𝜇0, 𝑉

Policy update:

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂𝑡 𝑟 𝑥,𝑎 +𝛾𝐄𝑦|𝑥,𝑎 𝑉𝑡 𝑦 − 𝑉𝑡 𝑥

Value update:
 𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑡 𝜇𝑡 − 𝛾𝜇𝑡𝑃

Gradient step in primal

Exponentiated gradient
step in dual

≈ incremental REPS
state-of-the art sample complexity

results for discounted &
undiscounted MDPs!

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2

THIS SHORT COURSE:
A PRIMAL-DUAL VIEW

•Markov decision processes
•Value functions and optimal policies

•Primal view: Dynamic programming
•Policy evaluation, value and policy iteration
•Value-function-based methods
• Temporal differences, Q-learning, LSTD, deep Q networks,…

•Dual view: Linear programming
•LP duality in MDPs
•Direct policy optimization methods
• Policy gradients, REPS, TRPO,…

part 1

part 2
what else?

state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?

state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?

• Multi-armed bandits
• Exploration bonuses
• Thompson sampling

• Monte Carlo tree search
• …

state actions

next state

reward

EXPLORATION VS. EXPLOITATION

reward?

reward?

reward?

reward?
reward? reward?

• Multi-armed bandits
• Exploration bonuses
• Thompson sampling

• Monte Carlo tree search
• …

Still no practical
algorithms!

CONCLUSION

RL is an insanely popular field with
 huge recent successes
 some beautiful fundamental theory
 unique algorithmic ideas

CONCLUSION

RL is an insanely popular field with
 huge recent successes
 some beautiful fundamental theory
 unique algorithmic ideas

BUT still fundamental challenges in
 understanding efficient exploration
 stability of algorithms
 generalizability of successes

CONCLUSION

RL is an insanely popular field with
 huge recent successes
 some beautiful fundamental theory
 unique algorithmic ideas

BUT still fundamental challenges in
 understanding efficient exploration
 stability of algorithms
 generalizability of successes

Come and work on RL theory ;)

CONCLUSION

RL is an insanely popular field with
 huge recent successes
 some beautiful fundamental theory
 unique algorithmic ideas

BUT still fundamental challenges in
 understanding efficient exploration
 stability of algorithms
 generalizability of successes

Come and work on RL theory ;)

Thanks!!!

+ also come see

tonight!

