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Big Data and Bayesian Learning?

" Large scale datasets are fast becoming the norm.

" Analysing and extracting understanding from these data 1s a driver of
progress 1n many sectors of society.

= Current successes 1n scalable machine learning are optimization-based and
non-Bayesian.

" What is the role of Bayesian learning in world of Big Data?
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Product Recommendation Systems

" Data: Collection of pairs {(1,))} and Yj;:
how much customer 1 likes product j.

= Learn about the likes and dislikes of each customer.

" Model each user and product as vectors.
Yii | Xuis Xpj ~ X X +N(0,€)

Year |Name #Ratings  |#Users #items
1999 |MovielLens M 943 1682
2004 [EachMovie |2.8M 72916 1682
2006 |Netflix 100M 480189 17770
2011 |Yahoo Music [263M 1000990 (624961
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Topic Modelling

= Data: Collection of “documents”, each document consisting of a number of
“words”.

= Learn about groups of co-occurring words, or “topics”.

" Model each document as a mixture of topics.

= Latent Dirichlet allocation [Blei1 et al 2003].
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Topic Modelling
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opcra Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
cvery bit as important as our traditional arcas of support 1n health, medical rescarch, education
and the social scrvices,” Hearst Foundation President Randolph A. Hearst said Monday in
Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilitics. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, aleading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100.000
donation, too.

announcing the grants.
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Bayesian Learning: Simple Setup

* Parameter vector X.

X
= Data items Y = y1, y2,... yn. /// \
Y1 Yo Y3

Yo o e N

= Model:

p(z,y) = p(z) Hp(yi\l‘) = p(x) H li()

= Aim:
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Important Issues Beyond This Talk and Setup

" Data:
= Heterogeneity and complexity

" Big collection of small data

= High dimensional data

= Causality

= Methodology:

= Modelling flexibility, generality and ease of use

" Algorithm flexibility, generality and ease of use

= Software flexibility, generality and ease of use
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Why Bayesian Machine Learning?

* An important framework to frame learning.

" Flexible and intuitive construction of complex models.
* Quantification of uncertainty.

= Mitigation of overfitting.

= Straightforward derivation of learning algorithms.
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Generic (Bayesian) Learning on Big Data

= Stochastic optimisation using mini-batches.

= Stochastic gradient optimisation.

" Distributed/parallel computations on cores/clusters/GPUs.

= MapReduce, parameter server.
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Generic (Bayesian) Learning on Big Data

= Stochastic optimisation using mini-batches.
= Stochastic gradient optimisation.

= Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]

= Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh
et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler &
Shang 2015...]

" Distributed/parallel computations on cores/clusters/GPUs.

= MapReduce, parameter server.

* Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013,
Wang & Dunson 2013, Stanislav et al 2014]

= Sampling via Moment Sharing [Xu et al 2014]
= Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Exponential Families

po(x) = exp (HTS(:B) — A(0))
= Sufficient statistics s, natural parameters 0, log partition function A(6).

= Equivalent parameterisation as mean parameters u:
p=Eq[s(x)]

= A(0) 1s convex with convex domain ©.

= Convex conjugate 1s the negative entropy A*(u) with convex domain M:
A (:u) — S%p HT:LL o A(@) — EQ(,LL) [1ng9(,u) (aj)]

= Derivatives of A and A* convert between natural and mean parameters:

u(0) = VA(O) () = VA™ (1)

" See [Wainwright & Jordan 2008].
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Arbitrary Model as Extended Exponential Family

= Prior po(x) in exponential family, log likelihoods /i(x).
N

p(zly) o< exp(dg s(x)) | [ exp(li(x))

1=1

= exp(|fp; 1. .. 1]T[S($); Lhi(z)...In(2)])

~

p(zly) = exp(d' 3(z) — A(9))
= Bayesian learning can now be posed as computing the mapping 6 s [i:

arg max 0' i — A*(fi)
neM

= A(0) — A(6p) is the log marginal probability of data.

= Example: Gaussian exponential family, s(x) = [x; x?

i = [Eglz]; Eglz?]; Bgléa (2)] . . . Eglln ()]
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Variational Inference
arg max 0 ' i — A*(f1)
peM
" Intractable optimization problem:

" intractable negative entropy

" intractable mean domain.

" Variational inference methods approximate both in different ways
[ Wainwright & Jordan 2008].

" Mean-field variational inference, variational Bayes [Hinton & van Camp
1993, Beal 2003, many others]

= Bethe approximation, loopy belief propagation [Frey & MacKay 1997,
Murphy et al 1999, Yedidia et al 2001, many others]

= Expectation propagation [Minka 2001, many others]
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Mean-Field Variational Inference

= Target posterior distribution: p(z|y) = eXp(éTg(Z) — A(é))

= Approximating posterior: q(x)

= Want q to be as close as possible to p, measured by KL divergence

KL(q||p) =Eq [log ¢(x) — log p(z|y)]
=E,[log q()] — " Ey[3(x)
L(q) :=0"Ey[3(z)] — E4[log q()

A(0) >0

< A(6)

" If no constraints on (, equivalent to previous formulation

arg max 0 ' i — A*(f1)
peM

= Lower bound on the log marginal data probability:
L(q) — A(bp) < A(0) — A(bo)
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Mean-Field Variational Inference

" If g assumed to have some simplifying form, leads to what 1s typically
known as variational inference or variational Bayes.

" Suppose that our model includes latent variables for each observation yj

p(z,y,2) = Hp 2)p(yil 2, @)
" Posterior over X, z 1s intractable. Assume variational posterior factorises
instead, 0@, 2) = ¢,(2)q. ()
L4z, qz) = 0" Eq[3(2, 2)] — Eq[log g(z, )]
= 0'Eq,q.[5(z, 2)] — Eq, [log g.(2)] — Eq.[log ¢-(2)]

= To maximise L, alternatively maximize wrt qgx, qz,
4z (z) oc exp(0 ' By, [3(x, 2)))
¢-(2) oc exp(0 ' By, [3(z, 2)))
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Mean-Field Variational Inference

N
* With model structure: 07 5(x, 2) = 6] s(z) + Z log p(z;, yi|x)
i=1

n(zi,y:) ' s(x)
= Updates become:

0=(2) o< exp(0 ' Eq, [3(z, 2)]) = (Z g, [logp(zz',yw)])

q:(2) o< exp (n(zi,y:) ' Eq, [5(2)))

4z () o< exp(0 Eq, [3(z, 2)]) = exp (‘98_ s(2) + Z]qu [10gp(zz-,y7:$)])
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Stochastic Variational Inference

" When N>>1, updates are expensive as each iteration requires computations
on all observations.

» Say the variational posterior of x is parameterised as g, (z) o< exp (A' s(z))

* One can instead optimise L wrt A using stochastic natural gradient ascent
[Robbins & Monro 1951, Bottou 1996], [Amar1 1998, Sato 2001].

[Hoffman et al 2010, Mimno et al 2012]
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Stochastic Gradient Optimisation

* Given an objective function f(x) to be maximized.

= Stochastic gradient ascent:

Tti1 = Tt —|— V [ (1) = —|— xf(-??t)

* With unbiased and finite variance gradient estimates
ElVaf(z)] = Ve f(z) VIV, f(z)] < W

= Convergent with step size condition

@) O
g €t = OO g €7 < 00
t=1 t=1

= [Robbins & Monro 1951]
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Stochastic Gradient Ascent for Maximum a Posteriori
" Joint log probability 1s

f(z) = log p(x +Zlogp yilz)

1=1
* To find xMAP use stochastic gradient ascent

Vf(x) = Vlogp(x +Zv10gp yilz)

1=1

Vf(x) = Vlogp(x) + % > Vlogp(y-,|z)

j=1
Til1 = X + etﬁf(a:)

" See [Bottou 1996] and many others.
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Stochasti

c Variational Inference

* The variational posterior of X 1s parameterised as Gz (T) OC €Xp ()\TS(CE))
with mean parameter v = u(\) = VA(N).

* Variational

L =E,

| objective 1s

0 5(2) + Sy 0z, w0) T s() — logg(x, 2)]

(80 + L1 Eq InCzisw)]) = 4°(3) = T, By, llog gz, ()]

= Gradient 1S
VAL = VEAM) (00 + L1 By, (2, 50)]) = VEA)A

= Stochastic

natural gradient 1s

VEAN) VAL = (00 + X300 B, [z, ur,)]) — A

= Update:

)\new _ (1 _ €)>\ —|— € (90 —|_ % Z;L::[ EQsz [n(ZTj7yTj)])
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Example: Latent Dirichlet Allocation

Online 98K
900
850
800 "\
2 ., Onlinedam DESTYEU
d 5
2700
)
Q. 650
600
1 03.5 1 04 1 04.5 10° 1055 106 106.5
Documents seen (log scale)
Documents 2048 4096 8192 12288 16384 32768 49152 65536
analyzed
systems systems service service service business business business
road health systems systems companies  service service industry
made communication health companies systems companies companies service
Top eight  service service companies  business business  industry industry  companies
words announced billion market company company company services services
national language = communication  billion industry management company company
west care company health market systems management management
language road billion industry billion services public public

[Hoffman et al 2013, Mimno et al 2012]
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Game
Season
Team
Coach
Play
Points
Games
Giants
Second
Players

©

Bush
Campaign
Clinton
Republican
House
Party
Democratic
Political
Democrats
Senator

1

Children
School
Women
Family
Parents
Child
Life
Says
Help
Mother

©

Life
Know
School
Street
Man
Family
Says
House
Children
Night

@

Building
Street
Square
Housing
House
Buildings
Development
Space
Percent
Real

12

Stock
Percent
Companies
Fund
Market
Bank
Investors
Funds
Financial
Business

3

Film
Movie
Show

Life

Television

Films
Director
Man
Story
Says

©)

Won
Team
Second
Race
Round
Cup
Open
Game
Play
Win

13

Church
War
Women
Life
Black
Political
Catholic
Government
Jewish

Pope

@)

Book
Life
Books
Novel
Story
Man
Author
House
War
Children

©

Yankees
Game
Mets
Season
Run
League
Baseball
Team
Games
Hit

14

Art
Museum
Show
Gallery
Works
Artists
Street
Artist

Paintings
Exhibition

5

Wine
Street
Hotel
House
Room
Night
Place
Restaurant
Park
Garden

10

Government
War
Military
Officials

Iraq
Forces
Iraqi
Army
Troops
Soldiers

15

Police
Yesterday
Man
Officer
Officers
Case

Found
Charged
Street
Shot

[Hoffman et al 2013,
Mimno et al 2012]
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Generic (Bayesian) Learning on Big Data

= Stochastic optimisation using mini-batches.
= Stochastic gradient optimisation.

= Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]

= Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013,
Teh et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler
& Shang 2015...]

" Distributed/parallel computations on cores/clusters/GPUs.

= MapReduce, parameter server.

* Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013,
Wang & Dunson 2013, Stanislav et al 2014]

= Sampling via Moment Sharing [Xu et al 2014]
= Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Variational Inference and Markov chain Monte Carlo

" Variational inference expresses posterior computation as optimisation of an
approximate system.

" Access to large body of optimisation methods.

= Approximation error hard to quantify.

= Monte Carlo methods express posterior computation as random sampling.

" Markov chain Monte Carlo: posterior as the stationary distribution.

= Typically more expensive but more accurate.

= Exact asymptotically

= Approximation error also hard to quantify given finite computation.

= Variance vs bias vs computation
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Random Walk Metropolis

" Current state &
* Proposed state ™ ~ N (x¢, €)
* Accept proposal with probability

min (1.252))

= Many, many advances since [Metropolis et al 1953, Hastings 1970].

= Big data: acceptance ratio expensive to compute.

* Random walk behaviour mixes very inetficiently.
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Metropolis Adjusted Langevin Algorithm

= Use local gradient information to improve proposal distribution
[Roberts & Tweedie 1996]

x* o~ xp + %Vx log p(z+,y) + N (0, €)

= Obtained as Euler-Maruyama discretisation of (overdamped) Langevin
dynamics:

1
dr; = §Vx log p(x¢, y)dt + dW;

" Big data: both acceptance ratio and proposal distribution expensive to
compute.
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Stochastic Gradient Optimisation

" Proposal update very similar to stochastic gradient ascent:

€
Ti41 = Tt T+ _tva: log p(z¢,y)

— 7 + — 2 (v logp(xt)—l—zz . Va logp(yzlwt))

Nt (V log p(z:) + = 2201 Vo logp(yfj\wt))

= Convergent with step size condition

@) @)
Eet:oo §€%<OO

t=1 t=1
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Stochastic Gradient Langevin Dynamics

* Plug in stochastic gradient into Metropolis adjusted Langevin algorithm
€

vir =30+ o5 (Valogp(a:) + X Y7, Valogplys,|2e) ) + N (0, )

= [gnore Metropolis-Hastings acceptance step (!)

= Step-size requirements apply, & — 0 slowly.

= Two sources of noise:
= Injected Brownian noise

* Gradient noise
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]

Stochastic Gradient Langevin Dynamics

€t

vir =30+ o5 (Valogp(a) + X Y7, Valogplys,|2) ) + N (0, )

* Aset —=0:
= Variance of gradient noise is O(g¢) while variance of injected noise is € >> &:.

= MH acceptance probability approaches 1, so we can ignore the expensive MH
accept/reject step.

=& — 0 slowly enough, so dynamics still able to explore whole parameter
space.

= Teh et al (2016), Vollmer et al (forthcoming) more detailed analysis.
= O(t'13) convergence rate.

* Not due to decreasing step size, rather due to lack of MH correction.
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Example: Latent Dirichlet Allocation

" x  HSVG
2200 6 OVB
+  SGRLD
2000 Collapsed Gibbs |-

Perplexity
o
o
o

{HSVG, OVB (SVI)

SGRLD
Gibbs

0 200 400 600 800 1000
# iterations through dataset

1600 |

1400
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Example: Latent Dirichlet Allocation

2200 .
x HSVG
2000} o OVB |
+ SGRLD
1800
>
£ 1600
o
S
D 14007 = A |
- ——6— HsVG, OVB (SVI)
1200} :
——— SGRLD
1000 ' '
0 50000 100000 150000

# documents

SN
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Convergence with Decreasing Step Sizes

* When using decreasing step sizes € — 0, a central limit theorem for SGLD
can be derived. Let T = 2« &s.

* When fluctuations dominates,
lim T, (B, [¢] - Eple]} = N(0,0%(¢))
* When bias dominates,
lim T,"*(E,, [¢] — Eple]} = N (u(0), 0 ()

* When fluctuations and bias balanced,

(B[] — By}

tooo Tyt Y oy €
= Optimal step size sequence has form & = (to+t)!/3 with T = t2/3,
= [Teh et al JMLR 2016]

= p(p)
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Convergence with Constant Step Sizes

" t steps of SGLD with constant step size €, generating Xi,...X:.

= Estimator:
pr =y () ? = Eply]

s<t

" Weak analysis Bias:

= Variance:
El(¢:] — E[g)?] = O ( " l)

* Optimal € gives MSE of O(t-%3).
* [Vollmer et al (forthcoming)]
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Stochastic Gradient MCMC

* SGLD obtained as discretisation of overdamped Langevin dynamics.
= Alternative SGMCMC algorithms can be constructed by
= constructing a SDE with the posterior as the stationary distribution

= discretising time 1n some way.

* Riemannian SGLD for probability simplices [Patterson & Teh 2013]
= Stochastic gradient Hamiltonian Monte Carlo [Chen et al 2014]

= Stochastic gradient Nose-Hoover thermostats [Din et al 2015, Leimkuhler &
Shang 20135]
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A Complete Recipe for SGMCMC

" [Ma et al 2015] showed a complete recipe ftor all SDEs with a desired
stationary distribution p(x).

" [.e. any SDE with stationary distribution p(Xx) has the form

dr, = ([D(z:) + Q)] V log p(x:) + T(x))dt + /2D () dW,

D(x) : a symmetric positive definite diffusion matrix

Q(x) : a skew-symmetric curl matrix
d
I'i(x) = Z V. (Dik(x) + Qjr(x)): a correction factor
k=1

W, . Brownian motion

= Large relevant literature in applied mathematics.
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Stochastic Gradient Hamiltonian Monte Carlo

" A naive generalisation of SGLD to use Hamiltonian dynamics would be to
introduce a momentum variable Q.

Tl =2 + M pyg
Pt+1 = pt + € Vy logp(:z:t, y)

= Does not fit into framework of [Ma et al 2013].

" Instead, need to introduce a friction term

Tor1 =T + e M py
pri1 = pe+ &V logp(we,y) — eDM " py + N(0,6,(2D — &V (24)))

= [Chen et al 2014]
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Generic (Bayesian) Learning on Big Data

= Stochastic optimisation using mini-batches.
= Stochastic gradient optimisation.

= Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]

= Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh
et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler &
Shang 2015...]

" Distributed/parallel computations on cores/clusters/GPUs.

* MapReduce, parameter server.

* Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013,
Wang & Dunson 2013, Stanislav et al 2014]

= Sampling via Moment Sharing [Xu et al 2014]
= Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]
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Machine Learning on Distributed Systems

= Distributed storage

= costly network
communications

= Distributed
computation
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Parameter Server

* Parameter server [Ahmed et al 2012], Downpour/DistBelief [Dean et al
2012].

parameter server:
* parameter X

4———"—'—_-
worker:
®*Xi=X

— [ — [ * SGD updates
| | H to Xj’
LR NO L * returns
>
AXi= Xi - Xj
Yii Yoi Y3i Yai
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Bayesian Learning
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Bayesian Learning
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Bayesian Learning
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Bayesian Learning

/\

,//'\

m 1
p(z|y) o< p(= HH (i | )

/ \\ * Not feasible exactly.

\;_/__ ~, F —— /D : (\\ — ~\ — \V.-_:/—»a " Approximations:

= Monte Carlo sampling

& Y = Y = = Variational inference

AN A AN A AN A AN

4””%) UNIVERSITY OF

\%{g 9).4:(0):3)) Big Data and Bayesian Learning Yee Whye Teh



Embarassingly Parallel MCMC Sampling

“Combine” samples together.

{xs}szl...S

inference problems.

? ““H F “"n ? ““H = Treat as independent
2 ) \\\ | =5 N L2 gy |
il il il <= Collect samples.

1Zjs tj=1...m,s=1...8

* Only communication at
[SCOtt et al 2013, Neiswanger et al 2013, the Combination Stage.

Wang & Dunson 2013, Stanislav et al 2014 ]
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Consensus Monte Carlo

= Each worker machine j collects S samples {X;s} from:

pi(z|y;) = 1/me yjilz)

" Master machine combines samples by weighted average:

ZWj ZWjZIZ‘jS
1=1 1=1

[Scott et al 2013]
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Consensus Monte Carlo

—1
m m
Ls = E WJ E :ijjs
j=1 =1

= Combination 1s correct if local posteriors are Gaussian.
= Weights are local posterior precisions.

* If not Gaussian, unclear how this can work.

[Scott et al 2013]

s 19).4:00):3) Big Data and Bayesian Learning Yee Whye Teh




Approximating Local Posterior Densities

= [Neiswanger et al 2013] proposed methods to combine estimates of
local posterior densities instead of samples:

= Parametric: Gaussian approximation.
= Nonparametric: kernel density estimation based on samples.

= Semiparametric: Product of a parametric Gaussian approximation
with a nonparametric KDE correction term.

m m S
1
p(r|y) o Hpj(l”yj) = H g Z’Chj($;$js)
j=1  s=1

j=1

* Combination: Product of (approximate) densities.

= Sampling: Resort to Metropolis-within-Gibbs.

* [Wang & Dunson 2013]’s Weierstrass sampler is similar, using
rejection sampling instead.

[Neiswanger et al 2013, Wang & Dunson 2013]
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Embarassingly Parallel MCMC Sampling

= Unclear how to combine worker samples

sensibly.
- full data poste‘mﬁ'
= Particularly if local posteriors on worker || Subeet posteriort
machines do not overlap.
2 - "'
il
= Combination at master involves: . it
= weighted average of samples [Scott et al] i
N I P \ s D
= Gaussian approximation [Neiswanger et al] o 1 e,
° o |iio NS N N
* KDE [Neiswanger, Wang & Dunson, = il —
Stanislav et al] -20 -10 0 10 20

Figure from Wang & Dunson
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Intuition and Desiderata

= Distributed system with independent

MCMC sampling.
" Identify regions of high (global) posterior = | ...~
probability mass. o || =5 Subset postorion
= Each local sampler is based on local data, ° '
but “concentrate on high probability - f %
regions”. i
= High probability regions found by o {;;f_,::_'.._i:_l-?/j”t' A e A
identifying its moments using small o -0 \ : o

amount of communication during learning. Figure from Wang & Dunson
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Generic (Bayesian) Learning on Big Data

= Stochastic optimisation using mini-batches.
= Stochastic gradient optimisation.

= Stochastic variational inference [Hoffman et al 2013, Mimno et al 2012]

= Stochastic Gradient MCMC [Welling & Teh 2011, Patterson & Teh 2013, Teh
et al 2016, Chen et al 2014, Ma et al 2015, Din et al 2015, Leimkuhler &
Shang 2015...]

" Distributed/parallel computations on cores/clusters/GPUs.

= MapReduce, parameter server.

* Embarassingly Parallel MCMC [[Scott et al 2013, Neiswanger et al 2013,
Wang & Dunson 2013, Stanislav et al 2014]

= Sampling via Moment Sharing [Xu et al 2014]
= Stochastic Natural-gradient EP and Posterior Server [Teh et al 2016]

Fewdy UNIVERSITY OF
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L ocal and Global Posteriors

" Each worker machine j has access only to its data subset.

pi(|y;) = Hp yji | )

where p;(x) 1s a local prior and pj(x | y;) 18 local posterior.

" The (target) global posterior 1s

p(x|y) o< p(a pr;,!a? < p(a H x’yj

* Choose local priors pj(x) so that
By, (aly,)s(2)] = 80 Vj

" Use expectation propagation (EP) [Minka 2001] to find good local priors.

oo UNIVERSITY OF
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Expectation Propagation

" If N 1s large, the worker j likelihood term p(y; | x) should be well
approximated by Gaussian

p(y; | w) = qj(z) = N(z; pj, Xj)

" Parameters fit iteratively to minimize KL divergence:

p(z|y) = pj(x|y) < p(y; |2) p(z) | [ ar(2)
k#j
p;(x)
;v () = arg Imin KL (p; (- | 9) | V(5 1 X)p; () )

" Optimal q; 1s such that first two moments of N (5 s, Z)pj (+) agree with p; (ly)

" At convergence,

Ep; @l [8(@)] = Ep@) 11, an(@)[$(2)] V)
[Minka 2001 ]

s 19).4:00):3) Big Data and Bayesian Learning Yee Whye Teh
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Expectation Propagation

p(z|y) =~ pj(x|y) < p(y; |2) p(z) | [ ar(x)
k7]
p;(x)
;v () = arg Imin KL (p; (- | 9) | N (5 1 X)p; () )

= Update performed as follows:
* Compute (or estimate) first two moments p*, 2* of pi( x | y).

* Compute L, 2 so that N(.; p;, 25) pi(.) has moments p*, 2%,

* In high-dimensions, can use diagonal covariances.
= Generalizes to other exponential families.
= EP tends to converge very quickly (when it does).

= At convergence, all local posteriors agree on their first two moments.

3 UNIVERSITY OF
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Big Picture

Posterior Server

Posterior

N a— A —

Network

Cavity

Likelihood
approximation

AAN

Likelihood

Worker

Cavity

Likelihood
approximation

ATAN

Likelihood

Worker

Cavity

Likelihood
approximation

AAN

Likelihood

Worker
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Demonstrative Example

= Simple 2D Gaussian example.

= 3 worker machines.

= 5000 MCMC samples used to

estimate sufficient statistics per
iteration.

= Each frame corresponds to 100
samples.
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Bayesian Logistic Regression

1 * * * : 1
1l *- * % % L ke i~ 5 *
1  ———" ! e
-1.5- « -1.5
Sra,
B e
237950 500 750 1000 1250 1500 237100 200 300 400 500 600
1<><T><N/m><103 1<><T><N/m><103
1,
= Simulated dataset. 0.5/
=d=20, # data items N=1000. O
~0.5
= NUTS based sampler.
_17
=# workers m = 4,10,50. s
=# MCMC iters T = 1000,1000,10000. 5
= # EP iters k given as vertical lines. Py
27200 400 600 800 1000 1200 1400

1<><T><N/m><103
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Bayesian Logistic Regression

= MSE of posterior mean, as function of total # iterations.

-O-SMS(s) _ _ :
| -%-SMS(a) - BT X
-%-SCOT @ &j)((
-/A-NEIS(p) é %
~7-NEIS(n) | |

o O WANG

3.2 64 06 12.8 16 19.2
5
x 10

S5 UNIVERSITY OF
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Bayesian Logistic Regression

= Approximate KL as function of # nodes.

Bl SMS(s,s)
2.5 ISMS(s.e) -
SMS(a,s)
SMS(a,e)
>/ SCOT _
Bl XING(p)

m=8 m=16 m=32 m=48 m=64

S%5% UNIVERSITY OF
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Spike-and-Slab Sparse Regression

* Posterior mean coefficients.

O e aenen. e TN .
02 0.21 #y
ﬁ**—*—***ﬁ%****%*—**— %H%%H**H&el&**%*
0 Of sk
—0.2F >, —0.2F >,
—0.4; EHRFEIRHAANA AN 0.4 **%%ﬁﬁ***ﬁ*ﬁ*ﬂ
0 1000 2000 3000 4000 0 500 1000 1500 2000
k x T x N/m x 10° k x TxN/mx 10’

P i)
s Y w-
~
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Stochastic Natural-gradient EP

* EP has no guarantee of convergence.

= EP technically cannot handle stochasticity in moment estimates.

" Long MCMC run needed for good moment estimates.

= No clear understanding of convergence and quality of approximation in
stochastic case.

= Fails for neural nets and other complex high-dimensional models.

= Stochastic Natural-gradient EP (Teh et al 2015):

= Alternative variational algorithm to EP.

= Convergent, even with Monte Carlo estimates of moments.

* Double-loop algorithm [Welling & Teh 2001, Yuille 2002, Heskes & Zoeter
2002]

= Arxiv manuscript 1512.09327.
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Exponential Families

po(x) = exp (HTS(:B) — A(0))
= Sufficient statistics s, natural parameters 0, log partition function A(6).

= Equivalent parameterisation as mean parameters u:
p=Eq[s(x)]

= A(0) 1s convex with convex domain ©.

= Convex conjugate 1s the negative entropy A*(u) with convex domain M:
A (:u) — S%p HT:LL o A(@) — EQ(,LL) [1ng9(,u) (CC)]

= Derivatives of A and A* convert between natural and mean parameters:

u(0) = VA(O) () = VA™ (1)

oo UNIVERSITY OF
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Arbitrary Model as Extended Exponential Family

* Prior po(x) in exponential family, log likelihoods /i(x) for each worker ;.

m

p(x|y) o exp(f4 s(z)) H exp(l;(x))
= exp([fo;1...1] " [s(2); 11 (x) ... Ln(2)])

~

p(zly) = exp( ' 5(x) — A(0))
= Bayesian learning can now be posed as computing the mapping 6 s [i:
arg max 0 ' i — A*(f1)
peM
= Variational inference:
= approximate negative entropy and

= approximate mean domain.

oo UNIVERSITY OF
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Expectation Propagation as Variational Approximation

* Write mean parameters ji = [{4; V1 - . - Uy -

= Approximate entropy as sums of local entropies,
approximate mean domain as intersections of local domains:

m
A ([ vrs - vn]) = A% ( +Z (A5 (p,vj) — A" () M= (M,
j=1
= Local entropies/domains are those associated with a single likelihood term
(and the prior).
= Variational optimization problem°
max g pio + Zl v — A (po) — Y (A5 (n,v5) — A" (1))
Hos kg vi]iiy P e
subject to Lo € M
i, vile M; forj=1,...
po =p; forg=1,...,m

3

oo UNIVERSITY OF
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Expectation Propagation as Variational Approximation

" Introducing Lagrange multipliers for the equality constraints,

max min 90 o — A" (o) + Z — >\T — [o) — A;(ij Vi) + A*(Mj))

m

,an[:u’jal/j]jzl P‘j]g 1

subject to o € M
i, vileM; forj=1,...,m

EP can now be derived as fixed-point equations:

= KKT conditions (setting derivatives to zero).

Problems:
* Non-convex due to +A*(u;) terms.

* No guarantee of convergence.

v UNIVERSITY OF
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Convergent Expectation Propagation

" Introduce additional parameters 0, and - KL terms
max ~ max 0 1o +ZV3 A* (o) Z (A7 (15, v5) — A" (ng) + KL(15165))
[Qj]Tzl MO)[:u'jal/j];nzl ,7 1 le
subject to o € M
wi,vile M; forj=1,...,m
po =p; forg=1,...,m

" where the KL divergence is KL(u; HH}) = A" (u;) + A(Q;) - ujT@;-

" maximizing over 0, results in the original problem.

" Alternative interpretation of [Heskes & Zoeter 2002]’s convergent EP.
= Different model structure.

= Makes clear the interplay between the cost function and constraints.

v UNIVERSITY OF

29 OXFORD Big Data and Bayesian Learning Yee Whye Teh




Convergent Stochastic Approximation Algorithm

" Introduce Lagrange multipliers and simplifying,

TN ax | xoin 0 10 — A (ko) + Y (vy = Aj (kj — o) — A5 (g, v5) + pj 05 — A(6}))
0s51H;,V J j=1

subject to pgp € M, |u;,v;leM; forj=1,...,m
p;cO© forj=1,...,m

= Noticing that cost function 1s concave in uo, Uj, and v;, we can maximize
over them (but not 6;’) and obtain the dual problem,

[gn/]ax [ginlA 0o + Z Aj |+ Z (A; (65 — X, 1) — A(65))
subject to Hj c 0 for] =1,...,m

= A; can be interpreted as natural parameters of an exponential family
approximation to the likelihood at worker ;.

v UNIVERSITY OF
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Stochastic Natural-gradient EP (SNEP)

* Can be optimised using a double-loop algorithm.

* Inner loop: stochastic natural gradient descent

AP — v (VA*(A§.“>) + € (3(x§t>) - VA (90 +y A+ Af,t”) ) )

k]

= x; are samples (we use SGLD with adaptive mass parameter) from the
local posterior:

T; ~ exp <(6’0 + D et )\k)T s(zj) +li(z;) — A (6’0 + D okt Mo 1))

* Outer loop: update auxiliary variables
_ (t—=1)
(9})(75) = 0o + Z A
" Distributed learning: j=1

* Communicate with master for approximate conditional 6o+ Xk Ax.

oo UNIVERSITY OF
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Posterior Server Architecture

Posterior Server

Posterior

N a— A —

A X[ A R

Cavity Cavity Cavity
Likelihood Likelihood Likelihood
approximation approximation approximation
Likelihood Likelihood Likelihood

Worker Worker Worker
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Experiments on Distributed Bayesian Neural Networks

" Bayesian approach to learning neural network:

= compute parameter posterior given complex neural network likelihood.

* Diagonal covariance Gaussian prior and exponential-family approximation.

= Two datasets and architectures: MNIST fully-connected, C

* Implementation in Julia.

= Workers are cores on a server.

FAR 10 convnet.

= SGLD sampler with adaptive mass parameter (preconditioner).
= Adagrad [Duchi et al 2011]/RMSprop [Tieleman & Hinton 2012] type

adaptation.

= Evaluated on test accuracy.

v UNIVERSITY OF

. 9).420):3)) Big Data and Bayesian Learning

Yee Whye Teh



MNIST 500x300 Fully-Connected, Varying #synciters

MNIST 500x300, 4 workers, natpost, averaged over 10 runs
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CIFAR10 AlexNet, Varying #workers

CIFAR Alex, natpost, averaged over 3 runs
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MNIST 500x300 Fully-Connected, vs Adam

MNIST 500x300, SNEP vs Adam

2.5
2.0
3
= method
-
Ct) W adam
@ W SNEP, 4 workers, beta=0.25
— =
v N
v X NS
= WETA - it
1.5 ‘."i“‘f'l'e* [ m.
. )
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0 3 6 9
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Concluding Remarks

" Bayesian framework should continue to be important in era of Big Data.

* Thank you!
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